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Introduction

Our project pertains to a quantum system where at time t = 0 we know that with
probability one the information is at node l.We track the time evolution of the system
in order to find a time T where the information is at node m with probability 1 if
there exists such a time T. We wish to characterize matrices that realize Perfect
State Transfer. Specifically we are looking at matrices that represent cycles on n
nodes. To categorize these matrices we have examined the spectrum of such matrices.
Additionally we have proved that an algorithm that splits paths on n vertices into
cycles on 2n− 2 preserves Perfect State Transfer.

Definitions

1. Consider

K =


0 k1 0 . . . 0 x
k1 0 k2 0 . . . 0
0 k2 . . . . . . ...
... 0 . . . . . . . . . 0
0 ... . . . 0 kn−1
x 0 . . . 0 kn−1 0

 (1)

This form represents the adjacency matrix of a cycle graph with weights. If
x = 0 we have a matrix representation of a path on n nodes.

Image of cycle graph, length n = 12

Note K is called a Periodic Jacobi Matrix.

2. Perfect State Transfer(PST) occurs between nodes l and m if and only if
there exists a time t such that

eitKeℓ = φem

where φ ∈ and |φ| = 1.

Theorem 1

LetK be an n×n symmetric matrix with real entries and let v⃗k = (vk,1, vk,2, . . . vk,n)
be the k-th eigenvector of K, 1 ≤ k ≤ n, with corresponding eigenvalue λk. The
following are necessary and sufficient for Perfect State Transfer to occur between nodes
ℓ and m.

1. |v⃗k,ℓ| = |v⃗k,m| for all k and

2. λk − λk+1 =
hkπ
T , with

• hk ∈ 2Z if
v⃗k,l
v⃗k,m

=
v⃗k+1,l
v⃗k+1,m

• hk ∈ 2Z + 1 if
v⃗k,l
v⃗k,m

= − v⃗k+1,l
v⃗k+1,m

Theorem 2

Let K be as in equation (1). If K does not have a simple spectrum, then K does not
realize perfect state transfer from node 1 to node n.

Example

Consider the matrix C =


0 1 0 x
1 0 1 0
0 1 0 1
x 0 1 0

 .

• The differences of eigenvalues hi = λi − λi+1 must be integer multiples of
π
T

• Then solve for these integers hi:

h1 = −T (1 + x)

π
, h2 = −T (−1− x +

√
5− 2x + x2)

π
, h3 = −T (1 + x)

π

In particular,
√
5− 2x + x2 must be integer-valued. This happens exactly when x = ±1.

Pick x = 1.

Node 1: Orange, Node 2: Green, Node 3: Yellow, Node 4: Green

Path To Cycle Algorithm: P4 to C6

1. Let P =


0 b1 0 0
b1 0 b2 0
0 b2 0 b3
0 0 b3 0

 realize PST. Set Up Eigenvalue equation with P :

P


P0
P1
P2
P3

 = λ


P0
P1
P2
P3

 . P0, P1, P2, P3 are orthogonal polynomials and when they are evalu-

ated at the appropriate λ they are the corresponding eigenvector. We use this notation for
convenience.

2. We yield the system of equations: b1P1 = λP0, b1P0 + b2P2 = λP1, b2P1 + b3P3 = λP2,
b3P2 = λP3.

3. Each Pi corresponds to a node on P4.

We will break this path into a cycle by splitting each inner node, Pi, into two nodes, P
1
i , P

2
i ,

where,

P 1
i + P 2

i = Pi and P 1
i = P 2

i .

4. Our new cycle can be visualized as

Theorem 3

The Path to Cycle Algorithm preserves perfect state transfer from node 0 to node
n− 1.

Orthogonal Polynomials

We can express the eigenvectors of our matrix in terms of orthogonal polynomials
Pi, that satisfy certain conditions:

• Pi of degree i exists for every i ≥ 0!

• Pi, Pj are orthogonal with respect to some positive weight function w(t). In
other words:∫ b

a
PiPjw(t) = 0 if i ̸= j

∫ b

a
PiPjw(t) ̸= 0 if i = j

For each eigenvalue λk of K, we can rewrite its eigenvalue equation as

K


P0(λk)
P1(λk)

...
PN−1(λk)

 = λk


P0(λk)
P1(λk)

...
PN−1(λk)



Restatement of Our Conditions

We can rewrite the eigenvector entries corresponding to K as orthogonal polynomials
{zi} evaluated at the eigenvalues of K. To find these zi, we take linear combinations
of orthogonal polynomials {pi}, {qi} defined by a three-term recurrence relation, so
that

zi(λk) = αipi(λk) + βiqi(λk).

Define the polynomial

E(λ) := (pℓ(λ) + β(λ)qℓ(λ))
2 − (pm(λ) + β(λ)qm(λ))2 .

The zeroes of this polynomial include the eigenvalues of K, counted according to
multiplicity. Using this fact, we restate our condition 1 from Theorem 1 as follows:
If K has PST from node ℓ to node m, then it must be the case that

E(λ) = det(P − λN )G(λ)

for some rational function G(λ)

Future Directions

We hope to characterize periodic Jacobi matrices that realize perfect state transfer.

• Is it always the case that a Hamiltonian that realizes perfect state transfer on
a cycle can be reduced to a Jacobi matrix?

• Is our construction the only Hamiltonian that realizes perfect state transfer
between nodes 1 and n in a cycle of length 2n− 2?
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