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Our project pertains to a quantum system where at time ¢ = 0 we know that with
probability one the information is at node [. We track the time evolution of the system
in order to find a time 7" where the information is at node m with probability 1 if
there exists such a time 7. We wish to characterize matrices that realize Perfect
State Transfer. Specifically we are looking at matrices that represent cycles on n
nodes. To categorize these matrices we have examined the spectrum of such matrices.
Additionally we have proved that an algorithm that splits paths on n vertices into
cycles on 2n — 2 preserves Perfect State Transfer.
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This form represents the adjacency matrix of a cycle graph with weights. If
x = 0 we have a matrix representation of a path on n nodes.

Image of cycle graph, length n = 12

Note K is called a Periodic Jacobi Matrix.

2. Perfect State Transfer(PST) occurs between nodes [ and m if and only if

there exists a time ¢ such that
il ey = Pem

where ¢ € and |p| = 1.

Let K be an n X n symmetric matrix with real entries and let vz, = (vg 1, Vg 2, - - - V)
be the k-th eigenvector of I, 1 < k£ < n, with corresponding eigenvalue ;.. The
following are necessary and sufficient for Perfect State Transter to occur between nodes
¢ and m.
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Let IC be as in equation (1). If IC does not have a simple spectrum, then K does not
realize perfect state transter from node 1 to node n.
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Consider the matrix C =

01011
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e The differences of eigenvalues h; = A\; — A\;11 must be integer multiples of %

e Then solve for these integers h;:
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In particular, v/5 — 22 + 22 must be integer-valued. This happens exactly when z = +1.
Pick x = 1.
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Node 1: , Node 2: Green, Node 3: , Node 4: Green

Path To Cycle Algorithm: P, to Cg
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1. Let P = %1 [92 1702 bOS realize PST. Set Up Eigenvalue equation with P:
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P i; = A i; . By, P, P», P53 are orthogonal polynomials and when they are evalu-
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ated at the appropriate A they are the corresponding eigenvector. We use this notation for

convenience.
2. We yield the system of equations: by P; = ARy, b1 Fy + 0o P> = APy, bo P + b3 Py = AP,
baPo = \P3.
3. Bach P; corresponds to a node on Pj.
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We will break this path into a cycle by splitting each inner node, F;, into two nodes, Pil, PZ-Q,
where,

P!+ P? = P, and P! = P?.

4. Our new cycle can be visualized as
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The Path to Cycle Algorithm preserves perfect state transter from node 0 to node
m = 1L

Orthogonal Polynomials

We can express the eigenvectors of our matrix in terms of orthogonal polynomials
P;, that satisfy certain conditions:

o P; of degree 1 exists for every ¢ > 0!

o P, P; are orthogonal with respect to some positive weight function w(t). In
other words:
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For each eigenvalue A;. of K, we can rewrite its eigenvalue equation as
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Restatement of Our Conditions

We can rewrite the eigenvector entries corresponding to /C as orthogonal polynomials
{2;} evaluated at the eigenvalues of IC. To find these z;, we take linear combinations
of orthogonal polynomials {p;},{q;} defined by a three-term recurrence relation, so
that

2i(Ak) = a;pi(Ag) + Bigi(Ag)-
Define the polynomial
E(\) = (pe(\) + BN @(N)* = (pm(A) + BN )gm(N)* .

The zeroes of this polynomial include the eigenvalues of K, counted according to
multiplicity. Using this fact, we restate our condition 1 from Theorem 1 as follows:
If IC has PST from node ¢ to node m, then it must be the case that

E(\) = det(P — Ay)G(N)

for some rational function G(\)

Future Directions

We hope to characterize periodic Jacobi matrices that realize perfect state transfer.

e [s it always the case that a Hamiltonian that realizes perfect state transfer on
a cycle can be reduced to a Jacobi matrix?

e [s our construction the only Hamiltonian that realizes perfect state transfer
between nodes 1 and n in a cycle of length 2n — 27
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