

Introduction

Our project pertains to a quantum system where at time $t = 0$ we know that with probability one the information is at node l . We track the time evolution of the system in order to find a time T where the information is at node m with probability 1 if there exists such a time T. We wish to characterize matrices that realize Perfect State Transfer. Specifically we are looking at matrices that represent cycles on n nodes. To categorize these matrices we have examined the spectrum of such matrices. Additionally we have proved that an algorithm that splits paths on n vertices into cycles on $2n - 2$ preserves Perfect State Transfer.

Definitions

This form represents the adjacency matrix of a cycle graph with weights. If $x = 0$ we have a matrix representation of a path on n nodes.

Image of cycle graph, length $n = 12$

Note K is called a **Periodic Jacobi Matrix**.

2. Perfect State Transfer (PST) occurs between nodes l and m if and only if there exists a time t such that

1. Consider

$$
\mathcal{K} = \begin{bmatrix} 0 & k_1 & 0 & \dots & 0 & x \\ k_1 & 0 & k_2 & 0 & \dots & 0 \\ 0 & k_2 & \dots & \dots & & \vdots \\ \vdots & 0 & \dots & \dots & 0 & k_{n-1} \\ 0 & \vdots & & \dots & 0 & k_{n-1} \\ x & 0 & \dots & 0 & k_{n-1} & 0 \end{bmatrix}
$$

(1)

$$
e^{itK}e_\ell=\varphi e_m
$$

where $\varphi \in$ and $|\varphi| = 1$.

Theorem 1

Let K be an $n \times n$ symmetric matrix with real entries and let $\vec{v_k} = (v_{k,1}, v_{k,2}, \dots v_{k,n})$ be the k-th eigenvector of K , $1 \leq k \leq n$, with corresponding eigenvalue λ_k . The following are necessary and sufficient for Perfect State Transfer to occur between nodes ℓ and m .

1. $|\vec{v}_{k,\ell}| = |\vec{v}_{k,m}|$ for all k and

We will break this path into a cycle by splitting each inner node, P_i , into two nodes, P_i^1 p_i^1, P_i^2 $i^2,$ where,

2.
$$
\lambda_k - \lambda_{k+1} = \frac{h_k \pi}{T}
$$
, with

•
$$
h_k \in 2\mathbb{Z}
$$
 if $\frac{\vec{v}_{k,l}}{\vec{v}_{k,m}} = \frac{\vec{v}_{k+1,l}}{\vec{v}_{k+1,m}}$

- $h_k \in 2\mathbb{Z} + 1$ if $\frac{\vec{v}_{k,l}}{\vec{v}_{k,n}}$ = − $\vec{v}_{k+1,l}$
- $\overline{\vec{v}_{k,m}}$ $\overline{\vec{v}_{k+1,m}}$

Theorem 2

Let K be as in equation (1). If K does not have a simple spectrum, then K does not realize perfect state transfer from node 1 to node n .

QUANTUM PERFECT STATE TRANSFER IN CYCLE GRAPHS Elizabeth Athaide ¹, Leia Donaway2, Sam Trombone 3 ¹Massachusetts Institute of Technology, ²Swarthmore College, ³Hamilton College

Consider the matrix $\mathcal{C} =$

The difomorphism of
$$
h = 1
$$
. This difference of $h = 1$. This is a function of $h = 1$.

- Is it always the case that a Hamiltonian that realizes perfect state transfer on a cycle can be reduced to a Jacobi matrix?
- Is our construction the only Hamiltonian that realizes perfect state transfer between nodes 1 and *n* in a cycle of length $2n - 2$?

Example	
Table 1: Let $T = \begin{pmatrix} 0 & 1 & 0 & x \\ 0 & 1 & 0 & 1 \\$	

- 2. We yield the system of equations: $b_1P_1 = \lambda P_0$ $b_3P_2 = \lambda P_3.$
- 3. Each P_i corresponds to a node on P_4 . Ω

$$
P_i^1 + P_i^2 = P_i
$$
 and $P_i^1 = P_i^2$.

4. Our new cycle can be visualized as

Example
\n
$$
\begin{pmatrix}\n(9+1) & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0\n\end{pmatrix}
$$
\n
$$
y_0 = 0
$$
\nwhere of eigenvalues, $h_1 = \lambda_1 - \lambda_2 = \text{max}$ be integers. Find the Cyclic Algebraal **P** is the same set of **A** and **C** are the linear basis of λ and **D** is the same set of **A** and **D** are the linear basis. If $h_1 = -\frac{T(1-x)}{x}, h_2 = -\frac{T(-1-x-x^2)}{x}, h_3 = -\frac{T(1+x)}{x}, h_4 = -\frac{T(-1-x-x^2)}{x}, h_5 = -\frac{T(-1-x-x^2)}{x}, h_6 = -\frac{T(-1-x-x^2)}{x}, h_7 = -\frac{T(-1-x-x^2)}{x}, h_8 = -\frac{T(-1+x)}{x}, h_9 = -\frac{T(-1+x^2)}{x}, h_{10} = -\frac{T(-1+x^2)}{x}, h_{11} = -\frac{T(-1+x-x^2)}{x}, h_{12} = -\frac{T(-1+x^2)}{x}, h_{13} = -\frac{T(-1+x^2)}{x}, h_{14} = -\frac{T(-1+x^2)}{x}, h_{15} = -\frac{T(-1+x^2)}{x}, h_{16} = -\frac{T(-1+x^2)}{x}, h_{17} = -\frac{T(-1+x^2)}{x}, h_{18} = -\frac{T(-1+x^2)}{x}, h_{19} = -\frac{T(-1+x^2)}{x}, h_{10} = -\frac{T(-1+x^2)}{x}, h_{11} = -\frac{T(-1+x^2)}{x}, h_{10} = -\frac{T(-1+x^2)}{x}, h_{11} = -\frac{T(-1+x^2)}{x}, h_{12} = -\frac{T(-1+x^2)}{x}, h_{13} = -\frac{T(-1+x^2)}{x}, h_{14} = -\frac{T(-1+x^2)}{x}, h_{15} = -\frac{T(-1+x^2)}{x}, h_{16} = -\frac{T(-1+x^2)}{x}, h_{17} = -\frac{T(-1+x^2)}{x}, h_{18} = -\frac{T(-1+x^2)}{x}, h_{19} = -\frac{T(-1+x^2)}{x}, h_{10} = -\frac{T(-1$

We hope to characterize periodic Jacobi matrices that realize perfect state transfer.

Acknowledgements and References

The authors were participants in the 2024 Mathematics REU at UConn. They are grateful for the support of grants from the National Science Foundation (DMS-1950543) and the University of Connecticut. The authors thank Maksym Derevyagin and Rachel Bailey for suggesting the problem and for their mentorship and support.