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What we’ll show you:

Krawtchouk paths proof
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Defining Kn

The Krawtchouk polynomials are defined by

Kn(x ,N) =
n∑

k=0

(−x)k(−n)k
(−N)k

2k

k!

We’ll define a Krawtchouck-style matrix to be the matrix corresponding to

Kn =

√
n(N + 1− n)

2
.

The underlying Jacobi matrix is mirror symmetric, corresponding to a path
weighted by Krawtchouk polynomials, with the first node being node 0
and the last being node N.
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Krawtchouk Paths Proposition

Proposition

The Krawtchouck-style matrix KN achieves PST from node 0 to node N
at time t = π.

To prove, recall the theorem for conditions sufficient for PST on paths
shown by Maksym in lecture.

Theorem

Let J be a Jacobi matrix of order N. Then there exists some t > 0 and φ
such that

e itJe1 = φeN ⇐⇒

1 J is mirror symmetric, and

2 λk − λk+1 =
(2nk+1)π

t , nk ∈ Z
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Proving Krawtchouk Paths Proposition

Proposition

The Krawtchouck-style matrix KN achieves PST from node 0 to node N
at time t = π.

As KN is mirror symmetric by construction, we want to show
λk − λk+1 = −1.

Let λ0, λ1, . . . , λN be eigenvalues of KN such that
λ0 < λ1 < · · · < λN . This is a strict inequality because our Jacobi matrix
has simple spectrum.

Definition

Let K′
N be defined as corresponding to the following recurrence relation.

−xKn(x ,N) =
N − n

2
Kn+1(x ,N)− N

2
Kn(x ,N) +

n

2
Kn−1(x ,N)

holding for all x if n = 0, 1, . . . ,N − 1 and for x = 0, 1, . . . ,N for n = N.
K′

N is mirror symmetric and similar to KN .
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Proving Krawtchouk Paths Proposition

Proposition

The Krawtchouck-style matrix KN achieves PST from node 0 to node N
at time t = π.

K′
N will have eignevalues λ′

0, . . . , λ
′
N .

This only holds for x ∈ 0, 1, . . . ,N − 1, =⇒ 0, 1, . . . ,N are the
eigenvalues of K′

N .

We see that the eigenvalue differences for K′
N are equal to −1, and

that λk = λ′
k + a for some constant a,

λk − λk+1 = λ′
k − λ′

k+1 − a+ a = −1, so λk − λk+1 = −1 is satisfied.

Thus, when t = π, λk − λk+1 =
−1π
t . This, combined with mirror

symmetry, implies by the PST on paths theorem that KN realizes
PST from node 0 to node N at time t = π.

□
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Orthogonal Polynomials: Review

Recall that we can write our recurrence relation using KN in terms of the
orthogonal Kratchouk polynomials:

KN


K0(x)
K1(x)

...
KN(x)

 = −x


K0(x)
K1(x)

...
KN(x)



This recurrence relation holds when Ki (x) is evaluated at eigenvalues λ of
KN . The corresponding column vector is an eigenvector of KN . Recall:

Ki of degree i exists for every i ≥ 0!

Ki , Kj orthogonal with respect to positive weight function w(t)

Zeroes of Ki and Ki+1 interlace!

In fact...

There exists a family of orthogonal polynomials for any Jacobi matrix!
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Splitting paths: Initial Algorithm

Path on Four Nodes to Cycle on Six Nodes

If the matrix P =


0 b1 0 0
b1 0 b2 0
0 b2 0 b3
0 0 b3 0

 realizes perfect state transfer then

C =



0 b1 0 0 0 b1
1
2b1 0 b2 0 0 0
0 b2 0 1

2b3 0 0
0 0 b3 0 b3 0
0 0 0 1

2b3 0 b2
1
2b1 0 0 0 b2 0

 also realizes perfect state transfer.

Maksym showed us the process on a P3 and we made code to generalize it
to Pn.
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Initial Algorithm

Set Up Eigenvalue equation with

P:

P


P0

P1

P2

P3

 = λ


P0

P1

P2

P3


P0,P1,P2,P3 are orthogonal polynomials and when they are
evaluated at the appropriate λ they are the corresponding eigenvector.
We use this notation for convenience.

We get the system of equations:

b1P1 = λP0

b1P0 + b2P2 = λP1

b2P1 + b3P3 = λP2

b3P2 = λP3
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Initial Algorithm

Each Pi corresponds to a node on P4 as seen below

We will break this path into a cycle by splitting each inner node, Pi ,
into two nodes, P1

i ,P
2
i , where,

P1
i + P2

i = Pi and P1
i = P2

i

Our new cycle can be visualized as

We will split the weight on the nodes such that the spectrum is
preserved.
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Initial Algorithm

We split the path by splitting the weight on an inner node into two
new nodes.

The new system of equations is as follows:

b1P1 = λP0

1

2
(b1P0 + b2P2) = λP1

1

1

2
(b2P1 + b3P3) = λP1

2

b3P2 = λP3

1

2
(b2P1 + b3P3) = λP2

2

1

2
(b1P0 + b2P2) = λP1

1
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Initial Algorithm

We will now relabel our polynomials,

Q0 = P0, Q1 = P1
1 , Q2 = P1

2

Q3 = P3, Q4 = P2
2 , Q5 = P1

2

And rewrite our system,

b1Q1 + b1Q5 = λQ0

1

2
Q0 + b2Q2 = λQ1

b2Q1 +
1

2
Q3 = λQ2

b3Q2 + b3Q4 = λQ3

b2Q5 +
1

2
b3Q3 = λQ4

1

2
b1Q0 + b2Q4 = λQ5

This is our splitting algorithm when given a path with PST,
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Initial Algorithm

Now we have the matrix C =



0 b1 0 0 0 b1
1
2b1 0 b2 0 0 0
0 b2 0 1

2b3 0 0
0 0 b3 0 b3 0
0 0 0 1

2b3 0 b2
1
2b1 0 0 0 b2 0

 which

has the same eigenvalues as P.
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Example
P5 to C8

We will use a P5 that has weights from the Krawtchouk polynomials.

Start with 

0 1 0 0 0

1 0
√

3
2 0 0

0
√

3
2 0

√
3
2 0

0 0
√

3
2 0 1

0 0 0 1 0
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Example

With the algorithm we get the cycle:

0 1 0 0 0 0 0 1
1
2 0

√
3
2 0 0 0 0 0

0
√

3
2 0

√
3
2 0 0 0 0

0 0
√

3
2 0 1

2 0 0 0

0 0 0 1 0 1 0 0

0 0 0 0 1
2 0

√
3
2 0

0 0 0 0 0
√

3
2 0

√
3
2

1
2 0 0 0 0 0

√
3
2 0
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Example

Do we get PST?

Yes at t = π
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A Useful Pattern

We did a few examples and saw a pattern:


0 b1 0 b1

1
2b1 0 1

2b2 0
0 b2 0 b2

1
2b1 0 1

2b2 0

 and



0 b1 0 0 0 b1
1
2b1 0 b2 0 0 0
0 b2 0 1

2b3 0 0
0 0 b3 0 b3 0
0 0 0 1

2b3 0 b2
1
2b1 0 0 0 b2 0


The terms with a coefficient of 1

2 are in the columns corresponding with
nodes that do not have their weight split.

Given b1, . . . , bn this is much easier to code than the algorithm we used to
derive these matrices.
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Orthogonal Polynomials for a Cycle

We want to find families of orthogonal polynomials that correspond to our
cycle matrices. However, we run into some issues:



0 b1 0 . . . 0 bN
b1 0 b2 . . . 0 0

0 b2 0
. . . 0 0

0 0
. . .

. . .
...

...
...

... bn−1

bN 0 0 . . . bn−1 0





P0

P1

P2
...
...

PN−1


= x



P0

P1

P2
...
...

PN−1


The first row gives

b1P1 + bNPN−1 = xP0.

If we assume that Pi has degree i , we get a contradiction!
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A Workaround!

What if we remove the condition that Pi has degree i?

We made it work!
We get: 

0 b1 0 . . . 0 bN
b1 0 b2 . . . 0 0

0 b2 0
. . . 0 0

0 0
. . .

. . .
...

...
...

... bn−1

bN 0 0 . . . bn−1 0





P0

P1

P2
...
P1

P0


= x



P0

P1

P2
...
P1

P0


If we set Pi = PN−1−i , we no longer have a degree contradiction ⌣
=⇒ an NxN matrix gives us ⌈N2 ⌉ polynomials.
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A Simple Example

We can explicitly solve for our polynomials given a matrix!
Let’s do the simplest example: bi = 1.



0 1 0 . . . 0 1
1 0 1 . . . 0 0

0 1 0
. . . 0 0

0 0
. . .

. . .
...

...
...

... 1
1 0 0 . . . 1 0





P0

P1

P2
...
P1

P0


= x



P0

P1

P2
...
P1

P0


Our polynomials look like:

P0 = 1,P1 = x − 1

P2 = x2 − x − 1

P3 = x3 − x2 − 2x + 1

P4 = x4 − x3 − 3x2 + 2x + 1
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Our Example

It turns out to be pretty hard to check if polynomials are actually
orthogonal, but we can observe some properties of these polynomials!

The zeros of these polynomials interlace!
This is evidence that we are on the right track to find some families of
orthogonal polynomials.
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Future Paths

Formalizing the splitting algorithm and gaining a better
understanding of how it works

More work with orthogonal polynomials!
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Thank you!
(Still to Maksym and Rachel)
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