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Definition

Definition (Perfect State Transfer)

Let J be a N + 1 ×N + 1 Jacobi matrix. If there exists a time t such that
eT0 e

iJte0 = 0 and ∣eTn e iJte0∣ = 1, then J has Perfect State Transfer
(PST) at t.
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Definition

PST Equiv Conditions

Recall that a Jacobi matrix has perfect state transfer at time T0 iff

It is mirror symmetric (symmetric across both diagonals)
There exists positive integers N2, ...Nk s.t. for its eigenvalues λ1, ..., λk ,
we have

λ2 − λ1 =
(2N2 + 1)π

T0
, ..., λk − λk−1 =

(2Nk + 1)π
T0

(1)
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Definition

Definition (Early State Exclusion)

Let J be a N + 1 ×N + 1 Jacobi matrix that has earliest perfect state
transfer at time T0. If there is a time 0 < t < T0 such that eT0 e

iJte0 = 0
and ∣eTn e iJte0∣ < 1, then J has Early State Exclusion (ESE) at time t.
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Overall Goal

Problem

Our goal is to find weighted paths of length N with Early State Exclusion
for infinitely many N.
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Examples of PST (no ESE)

Figure: 4 x 4 Case (N3 = 1,N3 = 1,N4 = 1)
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Examples of ESE

Figure: 4 x 4 Case (N2 = 1, N3 = 3, N4 = 1)

Figure: 5 x 5 Case (N2 = 1, N3 = 3, N4 = 3, N5 = 1)
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Root Finding Process

We begin with a set of eigenvalues, λ0, λ1, ...λN and calculate the
normalized eigenvectors of this tridiagonal matrix.

1 Normalize the eigenvectors so that the matrix which diagonalizes, P,
has the inverse P−1 = PT .

2 Then, using the spectral theorem, we have that e−iDt equal to:

e−iDt =
⎡⎢⎢⎢⎢⎢⎣

e−iλ0t ⋯ 0
⋮ ⋱ ⋮
0 ⋯ e−iλN t

⎤⎥⎥⎥⎥⎥⎦

Caleb, Kai, and Sara August 2nd, 2024 9 / 20



Root Finding Process

We begin with a set of eigenvalues, λ0, λ1, ...λN and calculate the
normalized eigenvectors of this tridiagonal matrix.

1 Normalize the eigenvectors so that the matrix which diagonalizes, P,
has the inverse P−1 = PT .

2 Then, using the spectral theorem, we have that e−iDt equal to:

e−iDt =
⎡⎢⎢⎢⎢⎢⎣

e−iλ0t ⋯ 0
⋮ ⋱ ⋮
0 ⋯ e−iλN t

⎤⎥⎥⎥⎥⎥⎦

Caleb, Kai, and Sara August 2nd, 2024 9 / 20



Root Finding Process

We begin with a set of eigenvalues, λ0, λ1, ...λN and calculate the
normalized eigenvectors of this tridiagonal matrix.

1 Normalize the eigenvectors so that the matrix which diagonalizes, P,
has the inverse P−1 = PT .

2 Then, using the spectral theorem, we have that e−iDt equal to:

e−iDt =
⎡⎢⎢⎢⎢⎢⎣

e−iλ0t ⋯ 0
⋮ ⋱ ⋮
0 ⋯ e−iλN t

⎤⎥⎥⎥⎥⎥⎦

Caleb, Kai, and Sara August 2nd, 2024 9 / 20



Root Finding Process

3 Then, by making the substitution t Ð→ i ln(x + iy), we must have
x2 + y2 = 1 (t is real) and we get that

e−iDt =
⎡⎢⎢⎢⎢⎢⎣

(x + iy)λ0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ (x + iy)λN

⎤⎥⎥⎥⎥⎥⎦

4 Then we calculate the matrix product according to the usual formula.
Since we want to know when x1(t) = 0, this becomes

(e0)T e−iJte0 = (e0)TPe−iDtPT e0 = P(x , y) + iQ(x , y) = 0

5 Then, we have 3 equations, P(x , y) = 0,Q(x , y) = 0, and x2 + y2 = 1.
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Plot

Figure: 7 x 7 Case (N1 = 1, N2 = N3 = N4 = N5 = N6 = 3, N7 = 1)
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Earliest P.S.T Lemma

Lemma

Let J be a n × n mirror symmetric matrix with P.S.T at time π and
eigenvalues λ0, ..., λn. Then the earliest time J has perfect state transfer is

π
gcd(m0,...,mn−1)

where mi = λi − λi+1.
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Sufficient Conditions for E.S.E

Theorem

Let n be an even integer and J be a n × n mirror symmetric matrix with
P.S.T at time π. Let λ0, ..., λn be the eigenvalues of J and let
mi = λi − λi+1. Suppose

1 λ0, ..., λn are symmetric around 0

2 gcd(m0, ...,mn−1) = 1
3 m n

2
> 1

Then J has E.S.E.
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Proof Sketch of Theorem

Proof.

Using Condition 1 we first pair up the negative and positive eigenvalues as
and rewrite them as
λ0 = −x n

2
, ..., λ n

2
= −x0 and

λ n+1
2
= x0, ..., λn = x n

2
. Then we may write eT0 e

iJte0 as

n
2

∑
i=0

2w(xi)cos(xs) (2)

Observe that each xs must be of the form 2ks+1
2 for some positive integer

ks and that xs < xs+1. By condition 3, x0 ≠ 1
2 . Thus k0 > 0. Then cos(xs)

is a Tschebyschef polynomial of degree ks using x = cos( t2).
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Proof Sketch of Theorem Continued

Condition 2 combined with the previous lemma implies that we have
earliest P.S.T at π. Since cosine is even, if we have P.S.T in the interval
(π,2π] we would have P.S.T in the interval [0, π). Thus the only time we
have P.S.T is at π. Following previous work on linear combinations of

orthogonal polynomials we know ∑
n
2
i=0 2w(xi)cos(xs) has at least 2k0 + 1

roots in [−1,1]. We know one of the roots is at t = π. The other roots
must then correspond to some t ≠ pi . But we know that we don’t have
P.S.T since t ≠ π. Thus we have E.S.E.
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Something That Didn’t Work

It is well known that, for a sequence of orthogonal polynomials,
{Pn(x)}∞n=0, that Pn(x) must have n zeroes over the support of the
measure/weight function, [a,b].

The classical way of proving this involves assuming Pn(x) has less than n
roots, and forming a monic polynomial R(x) which has the same roots as
Pn(x) and is therefore of degree less than n.
Then, the ”inner product” is evaluated:

∫
b

a
Pn(x)R(x)w(x)dx

by design, Pn(x) is orthogonal to any polynomial of degree less than n, so
this integral must be zero. However, if R(x) has the same roots as Pn(x),
then the integrand is always positive, meaning the integral is non-zero.
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Something That Didn’t Work: 2

We have proven that it is possible to realize ESE in infinitely many cases
of arbitrarily large matrices. However, this relies off of the assumption that
the size of the matrix is even. Computationally, this is too strong of a
restriction.

Why the problem?

We end up with an initial state probability amplitude along the lines of:

xi(t) = α0T0(t) + α1T2k1+1(t) + ...

Then, the theorem which we used for the even sized matrix case
guarantees us that there are at least... zero 0’s in the support of the
Chebyshev polynomials.
Is there a way of repurposing the proof from the previous slide in order to
guarantee at least one zero?
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Spoiler: No

Suppose that R(t) isn’t a monic polynomial which shares the same roots
as xi(t), but is a linear combination of Tchebysheff polynomials:

R(t) = αT1(t) + βT2(t)

Then, if R(t) has the same roots as xi(t), then we can use the same
argument with respect to orthogonality to show that there must be at
least 1 non-trivial root.

However, by doing some arithmetic, we get that there are some points in
the support of the Tschebyschev polynomials so that it is impossible to
have only one root
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Future Problems (AKA not ours?)

We’ve seen that the existence of ESE is intimately related to the location
of zeroes for Chebyshov polynomials. Given how many fundamental
questions in math deal with zeroes, there’s a lot of work cut out for
whoever continues this work.
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Thank you!

Thank you Dr. Maxym and Dr. Bailey! :)
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