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1 Introduction

In this paper, we explore the different ways Dirichlet eigenfunctions can be constructed at
any given level of the Sierpinski Gasket. This is done by dividing eigenfunctions into smaller
groups based on their eigenvalues and generations of birth. This exploration culminates in
finding that at themth level of the Gasket, there are a total of 3m−1−3

2
Dirichlet eigenfunctions.

2 Eigenfunctions of the Laplacian on V1

We can find all Dirichlet eigenfunctions by first finding all such eigenfunctions in the
m = 1 base case, and then extend to Dirichlet eigenfunctions at some higher level. We know
of two types of extensions to construct eigenfunctions in Vm from eigenfunctions in Vm−1 are
spectral decimation and external extension.

Spectral decimation only constructs Dirichlet eigenfunctions when performed on a Dirich-
let eigenfunction. External extensions preserve one of the boundary points, and thus only
result in a Dirichlet eigenfunction when performed on an eigenfunction with at least one zero
boundary point.

2.1 Dirichlet Eigenfunctions

On V1, any Dirichlet eigenfunction with eigenvalue λ must be of the form

0

a

c

0

b

0

As any eigenfunction must be non-zero at some point, let a ̸= 0 without loss of generality.
After normalization by a, the graph becomes

0

1

c

0

b

0

As this is an eigenfunction with eigenvalue λ, we use the formula [1]

∆1u(x) =
∑
x∼y

(u(x)− u(y))

to obtain the following equations
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λ = 4− b− c

λb = 4b− c− 1.

We solve this linear system through Gaussian elimination

[
1 1 4− λ

λ− 4 1 −1

]
→

[
1 1 4− λ
0 5− λ (λ− 5) (λ− 3)

]
→

[
1 1 4− λ
0 1 3− λ

]
→

[
1 0 1
0 1 3− λ

]
2.1.1 Suppose λ ̸= 5

Assuming λ ̸= 5 prevents division by zero in the second step above; thus b = 1 and c =
3−λ. We substitute this into the third equation obtained from the diagram, λc = 4c− b−1,
and simplify:

λc = 4c− b− 1

=⇒ λ (3− λ) = 4 (3− λ)− 2

=⇒ λ2 − 7λ+ 10 = 0

=⇒ (λ− 5) (λ− 2) = 0

From this computation, either λ = 5 or λ = 2. As we already required that λ ̸= 5, it
must be that λ = 2 and c = 1. Thus the only Dirichlet eigenfunction with λ ̸= 5 has λ = 2
and is visualized as

0

1

1

0

1

0

2.1.2 Suppose λ = 5

When λ = 5, the third equation λc = 4c− b− 1 yields b+ c = −1. Thus, the eigenspace
for Dirichlet eigenfunctions with eigenvalue λ = 5 is formed from the following basis:

0

1

0

0

-1

0 0

1

-1

0

0

0

Note, it is easy to see that the third rotation of this eigenfunction is not linearly inde-
pendent from the two above.

3



2.2 Non-Zero Boundary Points

We now look at functions that have the potential to extend into Dirichlet eigenfunctions.
First, we consider functions with one non-zero boundary point. As rotations of eigenfunctions
on a Gasket are still eigenfunctions, we let the normalized case be

0

b

1

a

c

0

The following eigenvalue equations can be read off this diagram:

λ = 4− b− c

λb = 4b− a− c− 1

λc = 4c− a− b− 1

Rearranging the second and third equations yields

(4− λ) b− c = a+ 1 = (4− λ) c− b

=⇒ (5− λ) b = (5− λ) c

Again, we break into cases based on the value of λ.
If λ = 5, then a + 1 = −b − c implies a = 0. This is a contradiction by the non-zero

boundary value assumption, so we require λ ̸= 5. It follows that b = c.

Substituting into the first equation, λ = 4− 2b implies b =
4− λ

2
. Thus

a+ 1 =
(3− λ) (4− λ)

2
=⇒ a =

(λ− 5) (λ− 2)

2
.

Having found a, b, and c in terms of λ, we can now easily construct V1 eigenfunctions
with one non-zero boundary point. This will be useful in a later part of our argument.

Additionally, through a combinatorial argument later on, it is seen that all Dirichlet
eigenfunctions are found without considering external extensions from eigenfunctions with
two non-zero boundary points.

Having gone through this V1 base case, the next few sections of the argument take on the
form of an inductive argument, considering different types of Dirichlet eigenfunctions on Vm

in relation to the Vm−1 case.

3 5-series
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3.1 Basis Element Extensions

We begin with the following eigenfunctions for λ = 5 on V1:

0

-1

0

0

1

0 0

0

1

0

-1

0

Our goal is to construct eigenfunctions of subsequent levels through asymmetric external
extensions.

Consider the left eigenfunction and perform an asymmetric reflection around the bottom
boundary point to obtain the following battery chain extension:

0

-1

0

0

1

0

0

0

0

-1

0

0

0

1

0

Likewise, we can do the same for the right eigenfunction and obtain another battery
chain expansion. Upon construction of the rest of the Dirichlet 5-eigenvalues, we will find
that the third battery chain is not linearly independent.

We can continue to perform battery extensions at each level m; the battery chain eigen-
functions at level m follow the same pattern as above. Thus, for any level m, we will count
two battery chain eigenfunctions in our basis of Dirichlet 5-eigenfunctions.

Returning to the left V1 eigenfunction, we can also perform an asymmetric reflection
around the bottom left corner to obtain

0

1

-1

0

0

-1

0

0

0

0

1

1

0

-1

0

This leads to an eigenfunction whose nonzero values circle the central hole of the graph. (We
use the term hole to denote an upside down triangle in the Gasket, an area that will stay
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empty at all higher levels.) The three other holes in the diagram above originated as center
holes from the lower-level gaskets used for this external construction.

In levels m ≥ 2, then it must be, by the above construction, that there is a Dirichlet
eigenfunction with non-zero values circling the center hole. Then, gluing this Dirichlet
eigenfunction with two copies of the zero function gives a new Dirichlet eigenfunction. Thus
we have a unique Dirichlet eigenfunction with non-zero values circling each hole that exists
in a m ≥ 2 level sub-Gasket.

We extend Vm−1 into Vm as above, by connecting Vm−1 with two cells of identical level,
thus creating a new central hole for the resulting diagram on Vm. Because each of the
other holes is a center hole at some lower level, it must be that the number of Dirichlet
eigenfunctions circling holes is exactly the number of holes which are center holes of some
level m ≥ 2 sub-Gasket. Let the set of these holes be defined as Am. Then the holes that do
not have a circular eigenfunction around them are {Hm\Am} (where Hm is the number of
holes on the level m Gasket). Removing these {Hm\Am} holes (and the vertices that create
them), leaves eactly the m− 1 level Gasket. Thus the number of Dirichlet eigenfunctions on
Vm circling holes is exactly the number of holes on the m− 1 level Gasket (Hm−1).

Thus, we expect that at level m, there are as many eigenfunctions as there are holes in
Vm−1, in addition to the two battery chain eigenfunctions.

3.2 Counting Holes

With the number of 5-eigenvalues relying on the number of holes at any given number,
we are motivated to find a formula for that value.

We claim that the number of holes Hm−1 at level m− 1 is given by Hm−1 =
3m−1−1

2
.

Proof. Consider the base case m=1. Then 30−1
2

= 0, so V0 has 0 holes. Assume the inductive

hypothesis Hm−1 = 3m−1−1
2

. Again thinking about the level-m Gasket as the composition
of three level-m − 1 Gaskets, we get the following recurrence relation: Hm = 3Hm−1 + 1.
Combining this with the inductive hypothesis, we find that

Hm = 3

(
3m−1 − 1

2

)
+ 1 =

3m − 3

2
+ 1 =

3m − 1

2
.

4 Interior Node Count

An important figure to know for the rest of this argument is the number of nodes, and
specifically interior nodes, at the mth level. At m = 1, there are 6 total nodes of which 3 are
interior; at m = 2, there are 15 nodes of which 12 are interior.

We claim that the number of interior nodes at level m is

|Vm \ V0| =
3m+1 − 3

2
.
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Proof. We prove this claim by induction. In the base case m = 1, |V1 \ V0| = 3m+1−3
2

=
32−3
2

= 6
2
= 3 as easily observed on the graph.

Assume the inductive hypothesis |Vm−1 \ V0| = 3m−3
2

.
We can think about going from level m − 1 to level m as taking three copies of the

m− 1-level Gasket and attaching them at the boundary points. Thus, we get the following
recurrence relation:

|Vm \ V0| = 3|Vm−1 \ V0|+ 3,

where the additional 3 accounts for where the three m − 1-level Gaskets attach to each
other, converting three boundary points into interior points. Combining this relation with
the induction hypothesis yields

|Vm \ V0| = 3

(
3m − 3

2

)
+ 3 =

3m+1 − 9 + 6

2
=

3m+1 − 3

2

as expected.

5 6-series

As above in section 2, in V1, for λ = 6 there are no Dirichlet eigenfunctions but three
eigenfunctions, each with one non-zero boundary condition. They are as follows:

2

-1

-1

0

1

0 0

-1

1

2

-1

0 0

1

-1

0

-1

2

5.1 Symmetric Extension

For a graph with a Laplacian of b at a boundary point with value a as shown below,
the symmetric extension about a will result in the Laplacian at a being 2b. Thus, for the
extension to satisfy the eigenvalue equation, it must be that 2b = λa.

a

b

For the λ = 6 eigenfunctions above, this condition is satisfied when reflected across the
non-zero boundary. Thus, the symmetric extension (up to rotations) is
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1

0

6 6

5.2 Basis Element Extensions

From the induction argument, assume Vm has |Vm−1 \ V0| linearly independent Dirichlet
eigenfunctions with the Laplacian equal to zero on the boundary, and an additional three
eigenfunctions, each with one non-zero boundary satisfying 2b = λa such that the zero
boundary points have zero Laplacian.

Each of the m − 1-level Dirichlet eigenfunctions has zero Laplacian on the boundary.
Thus, each eigenfunction can be extended in three different ways by gluing two copies of the
zero function onto two of the boundary points. Thus each m−1-level Dirichlet eigenfunction
produces three eigenfunctions at the m-level.

Since the boundary points at the m − 1-level have a Laplacian of 0, the boundary of
the new construction corresponding to a boundary of the lower level must also have zero
Laplacian. Moreover, as the lower level eigenfunction was glued with two zero functions,
the other two boundary points correspond to a boundary of the zero function and have zero
Laplacian. Finally, as the original eigenfunctions were linearly independent, it must be that
each of the new constructions with the zero functions glued onto the same places is still
linearly independent.

Let βm1 be the linearly independent set of the constructed eigenfunctions with the lower-
level eigenfunction as the upper cell, and zero functions as the bottom left and right cells.
Similarly, let βm2 have the constructed eigenfunctions that are non-zero in the bottom left
cell, and in the bottom right cell for βm3.

Any element of span{βm1} must either be the zero function or have nonzero values only
in the top third of the gasket, and no element of span{βm2} has non-zero values in the top
third cell. Thus it must be that span{βm1} ∩ span{βm2} = {0}. Thus βm1 ∪ βm2 form a
linearly independent set. Similarly, the union of all three bases (βm1, βm2, and βm3) form a
linearly independent set.

On the 6-eigenfunctions of V1, it is true that the two zero boundary points also have a
Laplacian of zero. Thus, by gluing two copies of the zero function to those two zero boundary
points, we obtain three new non-Dirichlet eigenfunctions.
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For each of the three non-Dirichlet eigenfunctions, because they each have two Dirichlet
boundary values with zero Laplacian, it follows that the zero eigenfunction can be glued
at those Dirichlet points resulting in an eigenfunction with one nonzero boundary value
and two boundary values corresponding to boundary points of the zero function (implying
zero Laplacian). Because the non-zero boundary point had 2b = λa and each a, b, λ stayed
unchanged, it follows that the new eigenfunction still has 2b = λa at the non-zero boundary
point. Because each of the lower-level eigenfunctions had their non-zero boundary point
at different positions and extending in this manner preserves the location of the non-zero
boundary point, it must be that the new eigenfunctions still have the non-zero values in
different positions.

Each of these three non-Dirichlet eigenfunctions can be symmetrically extended (glu-
ing the zero function to complete the construction) to create new Dirichlet eigenfunctions.
Because each of the new boundary values corresponds to a zero boundary value of the lower-
level eigenfunction or the zero function, it must be that they have zero Laplacian. Each
of the previous constructions where found by gluing a Dirichlet eigenfunction with the zero
function, thus each of the connections between the different thirds of the construction is
zero. In this new construction, the point reflected about is one of these connections however,
it is non-zero; thus, the new constructions are independent from the old ones. Each of the
three new constructions has the non-zero gluing point at a different location, thus they are
linearly independent of each other.

Thus at level m+ 1, we have found

3 (|Vm−1 \ V0|) + 3 = |Vm \ V0| .

Dirichlet 6-eigenfunctions, all of which have zero Laplacian on the boundary. We will prove
later that this is actually all of the Dirichlet 6-eigenfunctions at level m+ 1.

6 Spectral Decimation Count

We now determine the number of eigenfunctions derived from spectral decimation.
Given an eigenvalue λm−1 at the Vm−1 level, we can find two eigenvalues at the Vm level

using the equation [1]

λm =
5±

√
25− 4λm−1

2
.
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Using the eigenfunction values at Vm−1, the following equation can then be used to fill in
the eigenfunction that corresponds to λm:

u(y0) =
(4− λm)(u(x1) + u(x2)) + 2u(x0)

(2− λm)(5− λm)

where the boundary points of an m− 1-cell are x0, x1, and x2 are the boundary points of an
m− 1 cell, and y0 ∈ Vm\Vm−1 is opposite to x0 in that cell.

Thus, each m − 1 level eigenvalue/eigenfunction pair bifurcates to produce two eigen-
value/eigenfunction pairs at the mth level, due to the ± in the eigenvalue equation. While
counting, however, we must be aware of the possibility of forbidden eigenvalues, which pre-
vents us from carrying out spectral decimation. However, there are a few tricks we can
employ to ensure we avoid forbidden eigenvalues.

First, since all eigenvalues are positive, we always have that

λm =
5±

√
25− 4λm−1

2
< 5.

Thus λm ̸= 5, 6 when working with spectral decimation.
Now considering λm = 2, we observe how it arises when λm−1 = 6:

λm = 2 =
5±

√
25− 4λm−1

2

4 = 5±
√

25− 4λm−1

−1 = ±
√

25− 4λm−1

1 =
√
25− 4λm−1

1 = 25− 4λm−1

6 = λm−1.

We can also verify that λm = 3, a non-forbidden eigenvalue, is the other eigenvalue that
arises from λm−1 = 6. Thus, from each m−1 level eigenfunction with eigenvalue 6, we obtain
exactly one new eigenvalue λm.

We now combine these observations and consider all Laplacian eigenfunctions at level
m− 1.

and specifically which of them have have λm−1 = 6.
As described above, the number of Dirichlet eigenfunctions found through spectral dec-

imation is twice the number of Dirichlet non-6-series eigenfunctions plus the number of
Dirichlet 6-series eigenfunctions in the previous level. By grouping the Dirichlet 2-series
eigenfunction on V1 with the spectral decimation Dirichlet eigenfunctions, it then follows
that the number of Dirichlet eigenfunctions from spectral decimation at level m is twice
the number of Dirichlet eigenfunctions from spectral decimation at level m − 1 plus twice
the number of Dirichlet 5-series eigenfunctions at level m − 1 plus the number of Dirichlet
6-series eigenfunctions at level m − 1. This gives the following recurrence relation (D for
spectral decimation, f for 5-series, s for 6-series)
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Dm = 2 (Dm−1 + fm−1) + sm−1.

Using this grouping of the 2-series with the spectral decimation Dirichlet eigenfunctions,
it is then true that in the base case, D1 = 1. By examination, it follows that the closed form

solution of this recurrence relation and initial condition is Dm =
5 · 3m−1 − 3

2
. To confirm

this is the correct solution at the initial condition, it follows that D1 =
5·3m−1−3

2
= 5−3

2
= 1.

Evaluating this solution on the relation also gives

Dm =2 (Dm−1 + fm−1) + sm−1

=2

(
5 · 3m−2 − 3

2
+

3m−2 − 1

2
+ 2

)
+

3m−1 − 3

2

=5 · 3m−2 − 3 + 3m−2 − 1 + 4 +
3m−1 − 3

2

=6 · 3m−2 +
3m−1 − 3

2

=
4 · 3m−1

2
+

3m−1 − 3

2

=
5 · 3m−1 − 3

2
.

7 Total Eigenfunctions Found

From above, it is shown that at Vm there are 2 +
3m−1 − 1

2
5-series,

3m − 3

2
6-series,

and
5 · 3m−1 − 3

2
spectral decimation Dirichlet eigenfunctions. This means that the number

of Dirichlet eigenfunctions we have constructed at Vm thus far is

2 +
3m−1 − 1

2
+

3m − 3

2
+

5 · 3m−1 − 3

2

=
3m + 6 · 3m−1 − 3

2

=
3 · 3m − 3

2

=
3m+1 − 3

2
.

8 Laplacian Eigenfunction Bound

In trying to determine an upper bound on the number of Laplacian eigenfunctions, a
linear algebra approach works well. We can think about an m-level Gasket by considering its
Laplacian matrix representation, a 3m+1+3

2
× 3m+1+3

2
matrix. By construction, all Laplacian
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matrices are positive semi-definite matrices. That is, an n× n Laplacian matrix will have n
non-negative eigenvalues and an n-dimensional eigenspace.

In the case of the m-level Gasket, we have 3m+1+3
2

eigenvalues with a 3m+1+3
2

-dimensional

eigenspace (or equivalently, 3m+1+3
2

linearly independent eigenvectors/eigenfunctions). We
wish to determine how many are Dirichlet eigenfunctions.

For an eigenfunction to be Dirichlet, it must map the three boundary points to 0. That
is, given boundary points x0, x1, and x2, all Dirichlet eigenfunctions u must satisfy u(x0) =
u(x1) = u(x2) = 0. Thus, if we consider the Dirichlet eigenspace as a subspace of the
overall eigenspace, we automatically lose three dimensions, or equivalently, three linearly
independent eigenfunctions. Thus from this, our upper bound for Dirichlet eigenfunctions
at level m is

3m+1 + 3

2
− 3 =

3m+1 − 3

2
.

But as seen in the previous section, we have already found exactly that many Dirichlet
eigenfunctions for the m-level Gasket. Therefore, given this upper bound, we must have
found all of the Dirichlet eigenfunctions.

9 Conclusion

We determined the Dirichlet eigenfunctions of the m-level Gasket in three different ways,
corresponding to different constructions of eigenfunctions:

1. asymmetrical external extensions, used for the 5-series

2. symmetrical external extensions, used for the 6-series

3. (internal) spectral decimation.

By combining the number of Dirichlet eigenfunctions constructed through each method and
comparing to a known upper bound for the number of Dirichlet eigenfunctions, we suc-
cessfully concluded that there exist 3m+1−3

2
Dirichlet eigenfunctions at the mth level of the

Sierpinski-Gasket.
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