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Abstract

We calculate the Neumann spectrum of the graph Laplacian on the
Sierpinski Gasket, and discuss how to derive the Neumann boundary
constraints. We write the spectral decimation formula, which is used to
obtain eigenfunctions at each level m when λm−1 ̸= 2, 5, 6. We then
discuss the eigenfunctions with eigenvalues 5 and 6, which cannot be
generated by spectral decimation. A counting argument shows that we
have produced every Neumann eigenfunction. Finally, we compute
explicitly the Neumann spectra of ∆1 and ∆2.
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Neumann Boundary Conditions

Neumann Boundary Conditions

The Neumann boundary conditions require the normal derivative ∂n to
vanish at the boundary. This condition is satisfied for Γm if, when the
function is symmetrically reflected across each boundary point, the
interior points of this new “mega-gasket” satisfy the eigenvalue
equation.

That is, for q0, q1, q2 ∈ V0, this equation must be true:

4u(q0)− 2u(Fm
0 q1)− 2u(Fm

0 q2) = λmu(q0).
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Continued and Initial Eigenvalues

Continued and Initial Eigenvalues I

Eigenvalues can be divided into two categories: continued and initial.
The continued eigenvalues at level m are obtained through spectral
decimation of the eigenvalues at level m− 1. However, the number of
continued eigenvalues is less than the number of total eigenvalues at
any given level. The rest of the eigenvalues are initial eigenvalues (5
and 6), and their associated eigenfunctions cannot be constructed with
spectral decimation. If we take a continued eigenvalue at any level m,
it can always be traced back to some level m0 < m, where λm0 is
forbidden. These such eigenvalues are members of a λm0-series.
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Continued and Initial Eigenvalues

Continued and Initial Eigenvalues II
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Spectral Decimation

Spectral Decimation

Given λm−1 and a λm−1-eigenfunction defined on Vm−1, spectral
decimation formulas deliver a λm-eigenfunction on Vm. For
λm ̸= 2, 5, 6, we have these relations between subsequent eigenvalues:

λm−1 = λm(5− λm),

λm =
5±

√
25− 4λm−1

2
.

Each eigenvalue at level m− 1 splits into two eigenvalues at level m
(except for λm−1 = 6, which only leads to λm = 3, and λm−1 = 0,
which only leads to λm = 0).
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Spectral Decimation

Spectral Decimation

Using the new λm, the new eigenfunction at level m can be constructed
using

u(y0) =
(4− λm)[u(x1) + u(x2)] + 2u(x0)

(2− λm)(5− λm)
.

Here, x0, x1, x2 are boundary points of the (m− 1)-cell to which
y0, y1, y2 belong, depicted below.

x2

y1

y0

x0

y2

x1

The spectral decimation formulas are obtained from the λm eigenvalue
equations of u(yi), and the λm−1 eigenvalue equations of u(xi).
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Initial Eigenvalues Constant Eigenfunction

Constant Eigenfunction

Consider the eigenvalue λ = 0. We can see that the Neumann condition

4u(x0) = 2u(x1) + 2u(x2)

is always true for u(x0) = u(x1) = u(x2). Thus, the constant function is
an eigenfunction for λ = 0.

Using spectral decimation, we get that for λm = 0,

λm+1 =
5−

√
25− 4λm

2
= 0, 5.

However, 5 is a forbidden eigenvalue, so this generates only one
eigenvalue, λm+1 = 0.

Thus, λm = 0 is an eigenvalue with multiplicity 1 for all m.
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Initial Eigenvalues Initial Eigenvalues: 2-Series

2-Series

There are no Neumann 2-series for any m. We already know that there
are no λm0 = 2 Dirichlet eigenfunctions for m0 > 1. We also know all
the 2-eigenfunctions can be written as linear combinations of the
following three eigenfunctions.
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Initial Eigenvalues Initial Eigenvalues: 2-Series

2-Series Proof

To prove there are no Neumann 2-series, we go case by case. Looking
at the left most eigenfunction, we see that it is not Neumann anywhere
because the Laplacian at the boundary points will be nonzero (when
applied with the symmetric extension in mind). The middle and right
eigenfunctions have one Dirichlet-Neumann boundary point (0), but
these 2-eigenfunctions cannot be extended from that point while still
satisfying −∆2u = 2u. So, there are no 2-eigenfunctions at level m = 2.
An inductive argument tells us there are no 2-eigenfunctions for m ≥ 2.
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Initial Eigenvalues Initial Eigenvalues: 2-Series

2-Series Proof (cont.)

Also, if we check the Neumann condition

4u(q0)− 2u(Fm
0 q1)− 2u(Fm

0 q2) = λmu(q0)

for the other two boundary points (−3) and (3), it does not hold. If
the boundary points do not satisfy the Neumann condition, they are
not Neumann 2-eigenfunctions, and there are thus no 2-eigenfunctions
at level m = 1. Hence, we have no 2-series in the Neumann spectrum.

-3

-1

0

0

1

3

Ambrose, Bannon, Dunham, Iyer, RoarkNeumann Eigenfunctions on SG Monday 9th June, 2025 12 / 35



Initial Eigenvalues Initial Eigenvalues: 5-Series

5-Series I

The eigenvalue λm = 5 does not arise through spectral decimation.
Instead, 5-series eigenfunctions are born at each level m > 1. Each
such eigenfunction is supported around a hole in the graph Γm−1 and
satisfies the Neumann boundary condition due to its symmetric
structure.

There are exactly

Hm =
3m−1 − 1

2

such holes in Γm−1, and so this is the number of 5-series eigenfunctions
at level m.

Note that for m = 0 or m = 1, no 5-series eigenfunctions exist because
Γ0 has no holes.
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Initial Eigenvalues Initial Eigenvalues: 5-Series

5-Series II

Proof of Hole Count (from last week’s presentation):

The number of holes in Γm−1 is 3m−1−1
2 .

Base case: m = 1. Then Γ0 has 0 holes, and 30−1
2 = 0

Inductive step: Assume Hm = 3m−1−1
2 . Using the recurrence

Hm+1 = 3Hm + 1:

Hm+1 = 3

(
3m−1 − 1

2

)
+ 1 =

3m − 3

2
+ 1 =

3m − 1

2

This proves the claim.
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Initial Eigenvalues Initial Eigenvalues: 5-Series

5-Series III

x0

1

x1

-1

x2

-1 1

1

-1

If a 5-series eigenfunction forms a cycle around a hole that has nonzero neighbors to a
boundary point of the graph, then the symmetry of the loop forces the function values on
the neighboring vertices to be +1 and −1. This ensures that the Neumann boundary
condition holds.

Example: Consider boundary vertex x0.

0 = (4− λm)u(x0) = 2u(x1) + 2u(x2) = 2(1) + 2(−1) = 0

So the Neumann condition at x0 is satisfied.
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Initial Eigenvalues Initial Eigenvalues: 5-Series

5-Series IV

Linear Independence of Loop Eigenfunctions:

Each 5-series eigenfunction is supported around a unique hole in Γm−1,
and there is at least one vertex where it is nonzero and all others are
zero.

Because of this, no eigenfunction around one hole can be written as a
linear combination of the others. This is because any eigenfunction
requires a nonzero value on a vertex where all the others are identically
zero. This occurs at every level m.

Therefore, the set of loop 5-series eigenfunctions is linearly
independent.
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Initial Eigenvalues Initial Eigenvalues: 5-Series

5-Series V

x0

1

x1

x2

-1 1 -1

Battery Chains are Not Neumann:
Although battery chain configurations satisfy the Dirichlet condition as we saw in previous
presentations, they do not satisfy the Neumann condition. For example, at x0:

(4− λm)u(x0) = 0 ̸= 2 = 2(1) + 0 = 2u(x1) + 2u(x2)

So they are excluded from the count of 5-series Neumann eigenfunctions. This problem
occurs for every battery chain at every level m.
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Initial Eigenvalues Initial Eigenvalues: 6-Series

6-Series I

There is one 6-eigenfunction at level m for each vertex at level m− 1.
A 6-eigenfunction on Vm can be constructed by first picking a vertex
x ∈ Vm−1 and letting u(x) = 2. There are two cells of level m− 1 to
which x belongs (unless x ∈ V0, in which case there is only one):
x ∈ Fw(SG), Fw′(SG) where |w| = |w′| = m− 1. Assign values to the
vertices in Fw(SG) and Fw′(SG) such that they have the same values
as the 6-eigenfunctions for m = 2, and the 2’s match up at x. Finally,
let all x ∈ Vm that are not in the neighboring cells Fw(SQ), Fw′(SG) be
0. Any function constructed in this way satisfies −∆mu = 6u for all
points in Vm, where the Laplacian of a boundary point is taken
considering the symmetric extension.
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Initial Eigenvalues Initial Eigenvalues: 6-Series

6-Series II
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Initial Eigenvalues Initial Eigenvalues: 6-Series

6-Series III
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Initial Eigenvalues Initial Eigenvalues: 6-Series

6-Series IV

Linear Independence of 6-Eigenfunctions:

If one eigenfunction is constructed for each vertex x ∈ Vm−1 as
previously mentioned and all other vertices are set to 0, then this
process produces #Vm−1 linearly independent eigenfunctions. Linear
independence follows from the observation that each of these basis
eigenfunctions has u(x) = 0 for all but one boundary point, namely the
boundary point equaling 2. Thus, no linear combination of these
eigenfunctions can produce another one in the basis. All
6-eigenfunctions can be constructed by adding members of this basis.
The process repeats at every level m.
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Initial Eigenvalues Initial Eigenvalues: 6-Series

6-Series V

The number of vertices at level Vm is defined by

#(Vm) = 3 ·#(Vm−1)− 3,

with V0 = 3. The general form of #(Vm) is #(Vm) = a3m + b, and we
solve to find

#(Vm−1) =
3m + 3

2
.

This fact will play an important role in our counting argument, where
we prove that the Neumann eigenfunctions we have discussed are the
only Neumann eigenfunctions.
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Spectral Decimation Revisited

Spectral Decimation Preserves Neumann Conditions

Given that u is a Neumann eigenfunction at level m− 1, we need to
show that spectral decimation preserves the Neumann boundary
conditions. To do so, we look at 5-series and 6-series eigenfunctions
separately. The constant function is clearly Neumann.
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Spectral Decimation Revisited

Neumann Conditions: 6-Series and 5-Series

1
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Example I at Level m0

2

-1

-1

1

Example II at Level m0

If λm = 6, then the boundary points of the eigenfunction will be 0 or 2,
so we only need to prove that spectral decimation preserves the
Neumann conditions in those two cases. (Because spectral decimation
doesn’t change V0.) Also, all 5-series eigenfunctions are 0 at the
boundary points.
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Spectral Decimation Revisited

Neumann Condition Preservation

We must show that the Neumann condition is preserved when
performing spectral decimation. Assuming the boundary point is x0
with its neighbors x1, x2 at level m− 1, we must show that if the
Neumann condition holds for level m− 1, then it holds for level m:

(4− λm−1)u(x0) = 2u(x1) + 2u(x2)

=⇒ (4− λm)u(x0) = 2u(y1) + 2u(y2)

This breaks into two cases: u(x0) = 0, or u(x0) = 2.

x0

y1

y2

x2

y0

x1
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Spectral Decimation Revisited

When u(x0) = 0...

Let u(x0) = 0. Assuming the Neumann condition holds for λm−1:

(4− λm−1)u(x0) = 2u(x1) + 2u(x2)

0 = u(x1) + u(x2)

We must show:
(4− λm)u(x0) = 2u(y1) + 2u(y2)

0 = u(y1) + u(y2)

Using the spectral decimation formulas for u(y1) and u(y2):

u(y1) =
(4− λm)[u(x0) + u(x2)] + 2u(x1)

(2− λm)(5− λm)
, u(y2) =

(4− λm)[u(x0) + u(x1)] + 2u(x2)

(2− λm)(5− λm)

u(y1) + u(y2) =
(4− λm)[u(x0) + u(x2)] + 2u(x1)

(2− λm)(5− λm)
+

(4− λm)[u(x0) + u(x1)] + 2u(x2)

(2− λm)(5− λm)

u(y1) + u(y2) =
(4− λm)[2u(x0) + u(x1) + u(x2)] + 2u(x1) + 2u(x2)

(2− λm)(5− λm)

Since u(x1) + u(x2) = 0, and u(x0) = 0,

u(y1) + u(y2) =
(4− λm)[2(0) + 0] + 2(0)

(2− λm)(5− λm)
= 0

This completes the proof.
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Spectral Decimation Revisited

When u(x0) = 2...

Let u(x0) = 2. At the previous level, we know that

(4− λm−1)u(x0) = 2u(x1) + 2u(x2),

which, plugging in u(x0) = 2 and λm−1 = λm(5− λm), yields

(4− λm)(1− λm) = u(x1) + u(x2) ⇒ 4− λm =
u(x1) + u(x2)

1− λm
.

We want to show that u(x0) = 2 satisfies the Neumann condition at
level m:

(4− λm)u(x0) = 2u(y1) + 2u(y2) ⇒ (4− λm) = u(y1) + u(y2).

So, it suffices to show that

u(y1)+u(y2) =
u(x1) + u(x2)

1− λm
⇒ (1−λm)[u(y1)+u(y2)] = u(x1)+u(x2).
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Spectral Decimation Revisited

When u(x0) = 2...

Using

u(y1) =
(4− λm)[2 + u(x2)] + 2u(x1)

(2− λm)(5− λm)
,

u(y2) =
(4− λm)[2 + u(x1)] + 2u(x2)

(2− λm)(5− λm)
,

we find that (1− λm)[u(y1) + u(y2)] =

(1− λm)

(2− λm)(5− λm)
[(4− λm)(2 + u(x2)) + 2u(x1) + (4− λm)(2 + u(x1)) + 2u(x2)]

=
(1− λm)

(2− λm)(5− λm)
[4(4− λm) + (6− λm)(u(x1) + u(x2))].

From the fact that u is an eigenfunction at level m− 1 and u(x0) = 2, we know that the
equation u(x1) + u(x2) = (4− λm)(1− λm) holds. Then the above expression becomes

=
(1− λm)(4− λm)

(2− λm)(5− λm)
[4 + (6− λm)(1− λm)] =

(1− λm)(4− λm)(10− 7λm + λ2
m)

(2− λm)(5− λm)

= (1− λm)(4− λm) = u(x1) + u(x2).■

Ambrose, Bannon, Dunham, Iyer, RoarkNeumann Eigenfunctions on SG Monday 9th June, 2025 28 / 35



Spectral Decimation Revisited

Neumann Conditions: 5-Series Revisited

The preservation of Neumann conditions can be visualized by using
(anti-)symmetries.

a

−a

0 a

?

b

−a

−b

0

If a boundary value is 0 and the adjacent values are antisymmetric,
then the spectral decimation creates antisymmetric conditions on the
next level. This is clearly Neumann.
If the vertices adjacent to the boundary are not anti-symmetric, then
they are just 0, and spectral decimation preserves this at every level.
Since the boundary points are always 0 for the 5-series, the resulting
eigenfunction is still Neumann.
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Spectral Decimation Revisited

Neumann Conditions: 6-series Revisited I

1
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1

2
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-1

1

The two cases (and rotations, reflections, and gluing of 0s) are above.
We know that the antisymmetric corners remain Neumann through
spectral decimation. The case we need to worry about is the 2 in the
corner in the right case, but we already proved that corner remains
Neumann.
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Spectral Decimation Revisited

Neumann Conditions: 6-series Revisited II

1
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1

Notice that the left cell in figure 2. Is identical to the right cell in
figure 1. Additionally, the left cell in figure 1 is the even reflection of
this cell. We know spectral decimation on figure 1 results in the
Laplacian equation being satisfied, so the same is true for the even
reflection around the corner of figure 2.
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Eigenvalue Multiplicities

Counting Eigenfunctions on Γm I

To fully determine the Neumann spectrum on Γm, we must recover a total of

#(Vm) =
3m+1 + 3

2

linearly independent eigenfunctions.

Continued Eigenfunctions from Level m− 1

At level m− 1, there are 3m+3
2

eigenfunctions. However, not all of these double when
continued to level m through spectral decimation. Specifically, the constant 0-series
eigenfunction remains unchanged across all levels, and the 6-series eigenfunctions only
generate one new branch each.
Therefore, the number of eigenfunctions from level m− 1 that do double is

3m + 3

2
−

(
1 +

3m−1 + 3

2

)
= 3m−1 − 1

These 3m−1 − 1 eigenfunctions each contribute two new eigenfunctions to level m.
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Eigenvalue Multiplicities

Counting Eigenfunctions on Γm II

Total Neumann Eigenfunction Count at Level m:

The 3m−1 − 1 eigenfunctions that double contribute: 2(3m−1 − 1)
The constant 0-series eigenfunction contributes 1.

The continued 6-series eigenfunctions from level m− 1 contribute: 3m−1+3
2

The new 6-series eigenfunctions born at level m contribute: 3m+3
2

The new 5-series eigenfunctions born at level m contribute: 3m−1−1
2

Adding everything together, we find:

2(3m−1 − 1) + 1 +
3m−1 + 3

2
+

3m + 3

2
+

3m−1 − 1

2
=

3m+1 + 3

2

This confirms the expected dimension of the Neumann spectrum on Γm.
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Neumann Spectra of the Laplacian

Neumann Spectrum for ∆1 and ∆2 I

For ∆1, we should have 32+3
2 = 6 eigenvalues. Using the information we

have discussed, we find that the Neumann spectrum is {0, 3, 6} with
multiplicities (1, 2, 3). The 3 eigenvalue is gotten from the spectral
decimation of the 6 eigenvalue at m = 0.

For ∆2, the Neumann spectrum is {0, 5−
√
13

2 , 3, 5+
√
13

2 , 5, 6} with
multiplicities (1, 2, 3, 2, 1, 6). Besides the values gotten from the 0, 5,
and 6 series as discussed earlier, we use spectral decimation on the

previous eigenvalue λ1 = 3 to get λ = 5±
√
13

2 . We can see we have the

complete Neuamnn spectrum because we have 33+3
2 = 15 eigenvalues.
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Neumann Spectra of the Laplacian

Neumann Spectrum for ∆1 and ∆2 II

The way that the spectrum of ∆1 creates that of ∆2 is illustrated
below, where the eigenvalues in boxes are initial eigenvalues with
generation of birth m0 = 2.

0 3 3 6 6 6

0 5−
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13
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