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Counting Eigenfunctions in the Neumann Spec-
trum

For the Neumann spectrum, we should find a total of #Vm = 3m+1+3
2 linearly

independent eigenfunctions on each level Γm. The Neumann boundary condition
requires the normal derivative ∂n to vanish at the boundary. This condition is
satisfied for Γm if, when the function is symmetrically reflected across each
boundary point (even about the boundary), the boundary points satisfy the
eigenvalue equation. If q0 ∈ V0 is a boundary point of SG, and Fm

0 q1, F
m
0 q2 are

its neighbors, the eigenvalue equation evaluated at q0 becomes

λmu(q0) = −∆mu(q0) = 2(u(q0)− u(Fm
0 q1)) + 2(u(q0)− u(Fm

0 q2)),

which simplifies to:

(4− λm)u(q0) = 2u(Fm
0 q1) + 2u(Fm

0 q2).

Recall that the contractive mappings Fi satisfy the self-similar identity for SG:
SG = ∪2

i=0Fi(SG). So, Fm
0 q1 and Fm

0 q2 are simply the two vertices in Vm that
form an edge with q0.

The Neumann condition can also be thought of as the Mega-Gasket, created
through symmetric reflections across the boundary points, satisfying

eigenfunction equations at all non-boundary points, where a boundary point is
now any vertex with just 2 neighbors.
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The Neumann Laplacian can also be expressed as a matrix, which reflects the
fact that the boundary points V0 must satisfy the eigenvalue equation. On V1,
the matrix representation of the Neumann Laplacian is

4 0 0 0 −2 −2
0 4 0 −2 0 −2
0 0 4 −2 −2 0
0 −2 −2 4 −1 −1
−2 0 −2 −1 4 −1
−2 −2 0 −1 −1 4

 ,

if the columns/rows are ordered so that the first three columns/rows correspond
to the boundary points qi ∈ V0 and the last three columns/rows correspond to
the interior points yi ∈ V1 \ V0. When multiplied against the vector u|V1

, it is
clear why this representation makes sense:

4 0 0 0 −2 −2
0 4 0 −2 0 −2
0 0 4 −2 −2 0
0 −2 −2 4 −1 −1
−2 0 −2 −1 4 −1
−2 −2 0 −1 −1 4




u(q0)
u(q1)
u(q2)
u(y0)
u(y1)
u(y2)

 =


−∆1u(q0)
−∆1u(q1)
−∆1u(q2)
−∆1u(y0)
−∆1u(y1)
−∆1u(y2)

 .

Here, −∆1u(qi) is the Laplacian at qi ∈ V0, once the function has been evenly
reflected across xi.

Initial Eigenfunctions Born at Level m

5-Series

The forbidden eigenvalue 5 cannot arise as a result of the spectral decimation
formula. Rather, at each level m, 5-series eigenfunctions are born. Each such
eigenfunction corresponds to a hole in the graph Γm−1, and satisfies the Neu-

mann condition due to its symmetric structure. There are 3m−1−1
2 such holes.

Battery-chain configurations satisfying the Dirichlet conditions are excluded
from this count, as they do not satisfy the Neumann conditions. Note that
there cannot exist 5-eigenfunctions for m = 0 or m = 1, because only for m > 1
does the preceding graph Γm−1 have a hole.
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The 5-series eigenfunctions which are loops around the holes satisfy the Neu-
mann conditions at the boundary. (4 − λm)u(x0) = 2u(x1) + 2u(x2) =⇒ 0 =
2(1)+2(−1). The loops form a linearly independent set since each is a localized
function around a separate hole. Any linear combination of the corresponding
eigenfunctions remains localized within their respective regions and cannot gen-
erate an eigenfunction with around a different hole.

1 -1 1 -1

The battery chains do not satisfy the Neumann boundary condition. At the
boundaries, (4− λm)u(x0) = 0 ̸= 2u(x1) + 2u(x2) = 2(1) + 0 = 2.

6-series

There is one 6-eigenfunction at level m for each vertex at level m − 1, so the
multiplicity of λm = 6 is Mm(6) = #Vm−1 = 3m+3

2 . A 6-eigenfunction on Vm

can be constructed by first picking a vertex x ∈ Vm−1 and letting u(x) = 2.
There are two cells of level m − 1 to which x belongs (unless x ∈ V0, in which
case there is only one): x ∈ Fw(SG), Fw′(SG) where |w| = |w′| = m−1. Assign
values to the vertices in Fw(SG) and Fw′(SG) such that they have the same
values as the 6-eigenfunctions for m = 2, and the 2’s match up at x. Finally,
let all x ∈ Vm that are not in the neighboring cells Fw(SQ), Fw′(SG) be 0.
Any function constructed in this way satisfies −∆mu = 6u for all points in Vm,
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where the Laplacian of a boundary point is taken considering the symmetric
extension. Some examples of this kind of construction for m = 2 follow.
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If one eigenfunction is constructed for each vertex x ∈ Vm−1 as previously men-
tioned and all other vertices are set to 0, then this process produces #Vm−1

linearly independent eigenfunctions. Linear independence follows from the ob-
servation that each of these basis eigenfunctions has u(x) = 0 for all but one
boundary point, namely the boundary point equaling 2. Thus, no linear com-
bination of these eigenfunctions can produce another one in the basis. All 6-
eigenfunctions can be constructed by adding members of this basis. The process
repeats at every level m.
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2-series

There are no Neumann 2-series for any m. We know that there are no λm0 = 2
Dirichlet eigenfunctions for m0 > 1. We also know all the 2-eigen functions
must be within these possibilities.
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To prove there are no Neumann 2-series, we go case by case. Looking at the
left most eigenfunction, we see that it is not Neumann. The middle and right
eigen functions have one Dirichlet-Neumann boundary point (0) but we know
these 2 eigen functions cannot be extended from that point. Also checking the
Neumann condition (3.3.1) in the book for the other two boundary points (−3)
and (3) it does not satisfy. If the boundary points do not satisfy the Neumann
condition, they are not Neumann 2-eigen functions. Hence we have no 2-series
in the Neumann spectrum.

Constant

There is always one constant function with λm = 0, which does not double at the
next level. This is evident because the spectral decimation formula for λm−1 = 0

yields λm = 0, 5 and five is forbidden. (λm =
5±

√
25−4λm−1

2 = 5±5
2 = 0, 5).

Thus, only a 0-eigenfunction continues to the next level Γm.

Continued Eigenfunctions from Level m− 1

From level m− 1, there are
3m + 3

2

eigenfunctions. However, not all of these double through spectral decimation
when continuing to level m. Two types of eigenfunctions do not double. The
constant 0-series eigenfunction remains unchanged across all levels. The 6-series
eigenfunctions only generate one branch through spectral decimation.

Therefore, the number of eigenfunctions from level m− 1 that do double at
level m is:

3m + 3

2
−

(
1 +

3m−1 + 3

2

)
= 3m−1 − 1.

These 3m−1 − 1 eigenfunctions double in level m through spectral decimation.

Total Count of Neumann Eigenfunctions at Level m

Summing all contributions to the spectrum at level m: 2(3m−1 − 1) doubled
eigenfunctions through spectral decimation. 1 constant 0-series eigenfunction.
3m−1+3

2 continued 6-series eigenfunctions from level m − 1. 3m+3
2 born 6-series

eigenfunctions at level m. 3m−1−1
2 born 5-series eigenfunctions at level m.
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Adding these gives the total:

2(3m−1 − 1) + 1 +
3m−1 + 3

2
+

3m + 3

2
+

3m−1 − 1

2
=

3m+1 + 3

2

This confirms the expected dimension of the Neumann spectrum on Γm.

Generic Γm Diagrams (m = 0, 1, 2)

The spectrum for ∆1 and ∆2

The Neumann spectrum for ∆1 is {0, 3, 6} with multiplicities of (1, 2, 3) respec-
tively.

The Neumann spectrum for ∆2 is {0, 5−
√
13

2 , 3, 5+
√
13

2 , 5, 6} with multiplici-
ties (1, 2, 3, 2, 1, 6) respectively.
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