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Background




History and Motivation

We expand on work by Grigorchuk and Zuk, who studied the Schreier
graphs of the Basilica group [4, 5.

® Amenability and subexponential growth of the Basilica group

® Weighted Laplacians on these graphs with spectra invariant under
a two-dimensional dynamical system

® We develop an alternative description of the dynamical system in
[5] and study the corresponding dynamics for the eigenfunctions.
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Background: Graph Approximations of the Basilica Set

Fo: b () > a

a-edges (pink) have weight wg; b-edges (black) have weight 1
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Background: Graph Approximations of the Basilica Set

Fo: b () > a

a-edges (pink) have weight wg; b-edges (black) have weight 1

Replacement Rules
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Background: Graph Approximations of the Basilica Set

a-edges (pink) have weight w,, € RT; b-edges (black) have weight 1
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Background: Graph Approximations of the Basilica Set

a-edges: pink
b-edges: black
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Background: Graph Approximations of the Basilica Set

a-edges: pink
b-edges: black
Vi \ Vi—1 vertices: gray
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The Graph Laplacian

The graph Laplacian encodes all information on I';, as a 2" x 2™ matrix:
An =D, — Ana

where D, = (2 + 2wy,)[ is the diagonal matrix and A, = (a;;) is the
adjacency matrix, with entries

kwy if i ~ j (via k a-edges);
aj; = § kif i ~ j (via k b-edges);
0if i o .
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The Graph Laplacian

The graph Laplacian encodes all information on I';, as a 2" x 2™ matrix:
An =D, — Ana

where D, = (2 + 2wy,)[ is the diagonal matrix and A, = (a;;) is the
adjacency matrix, with entries

kwy if i ~ j (via k a-edges);
aj; = § kif i ~ j (via k b-edges);
0if i o .

Definition (Laplacian Eigenfunction)

For all v € V,,, a Laplacian eigenfunction u,, on I',, satisfies

Apun(v) = Aup (v).
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The Graph Laplacian Acting on Functions

For a single vertex v € V,, and a function v on I';,,

Apu(v) = wy Z (u(v) — u(z)) + Z (u(v) — u(z)).

xr~v xr~v
a b

Example: On I'y the graph Laplacian on a function w is

2 0 -2 0 u(zr)
0 -2 u(ze)
-2 0 242wy —2ws u(xs)
0 —2 2wy 242w |u(xy)

\V]

AQ'LL =
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Results




Constructing Eigenfunctions

Theorem (Restricting w,, to obtain u,,_1)

Suppose Ty, has weight wy, # 0 and A\, # 2, where u,, satisfies

Anty = Apuy. Then, restricting uy, to the vertices V,,_1 produces an
eigenfunction on I'y,_1, with

4\, — N2 1
_nn and Wpe1 =

Wn, (2 - )\n) B Wn (2 - An) '

<o 00>

Removing V3 \ V2 (gray) to obtain I'y

)\n—l =
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Constructing FEigenfunctions (Proof)

We construct A, recursively [5]. Let ag = by =1,

_ In—l 0 _ 0 In—l
el R RS Py

Then, A,, =2+ 2w, — wy, (an —|—a;1) - (bn+b;1) and A,, — \, =

2 — Mo —(a,t, +1) _[A B
—(an—1+1) 2+2w, —wp (bao1 +b,21) —Aa|  |C D
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Constructing FEigenfunctions (Proof)

We construct A, recursively [5]. Let ag = by =1,

Qo — In—l 0 b, — 0 In—l
" 0 bp—1]’ " an—1 0 )

Then, A,, =2+ 2w, — wy, (an —|—a;1) - (bn+b;1) and A,, — \, =

2 — Mo —(a,t, +1) _[A B
—(an—1+1) 2+2w, —wp (bao1 +b,21) —Aa|  |C D

Write the eigenfunction u,, = { tn ] , where u,, = u, and
n—1 Va\Vn-1
Up—1 = Up, . Then
n—1
A B| ]| u,
(B — M)y = [ a D] LJ 0.
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Constructing FEigenfunctions (Proof)

The Schur complement of A, D — CA~!B, “deletes” vertices V;, \ V;,_1:

(D-CA™'B)uy_1=0

2 an_1+a’t i 4Ay — N2
<2+w ( e ! _(bn1+bn11)_n)> Up—1 = 0.

2= X)) wa(2=X\) wn(2 = Ay
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Constructing FEigenfunctions (Proof)

The Schur complement of A, D — CA~!B, “deletes” vertices V;, \ V;,_1:

(D-CA™'B)uy_1=0

2 an_1 +a;ly . AN, — N2
2 — — (by— b ~,) — ——= n—1 = U.
( R cRw R oo w i GO e ooyl K

Compare to the eigenvalue equation on I'),_1:

(2 + 2Wp—1 — wp—1 (anfl + a;il) - (bnfl + b;il) - )\nfl) Up—1 = 0.
Thus, u,_1 is an eigenfunction for A,_; with

1 4D, — N2
) )\’n—l =
wn (2= Ap) wn (2—=A\p)

Wp—1 =
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Constructing Eigenfunctions

Theorem (Building w,,1; from u,)

Let uy, satisfy Apun(v) = Aun(v) for allv € V,,, and let A\pt1 # 2 and
wn+1 be written in terms of A, and wy, using the eigenvalue-weight
dynamics. Then u, extends to V11 by:

Unt1(V) = p Zun , 0 € Viy1 \ V.
n

This creates an eigenfunction un+1 Satisfying Apii1Un+1 = Apgp1Un41-

@ Q @ Upi1(v) = %ﬁn(m

Cell in T4
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Characteristic Polynomial Recursion

Corollary

Let Uy, _1(wp—1,An—1) be the characteristic polynomial of A,—1 on
1, with w,—1 # 0. Then the characteristic polynomial of A, on T’y
s given by

2n—1

v, (wna )‘n) = (wn(2 - )\n))

. 1 A — A2
" on (2= M) wn(2 = An)

Motivation: Grigorchuk and Zuk prove analogous results for the
adjacency matrix with their dynamics, which we adapt to I, [5].
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Inverting Dynamics

o With (An,wn) = (An—1,wn—1), need A\, # 2
e With (Ap—1,wn—1) = (An,wn), need 4 > An-t

Wn—1
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The 0-Series and 2-Series

Lemma (0-Series and 2-Series)

For any A\, there exists some m < n such that X\, recurses down to
An =0 or A\, =

oo

0-Series Eigenfunction (n = 3) 2-Series Eigenfunction (n = 3)
(non-zero points in black) (non-zero points in black)

® (-series: At some 0 < m < n, Ay, = 0; V,,, is the constant function

® 2-series: At some 3 < m <n, Ay, = 2; V,,,_1 is the zero function
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2-series Eigenfunctions

Lemma (A, = 2 Multiplicity)

21434 (=)
. :

The multiplicity of 2 as an eigenvalue of T'y, is

non-zero points in black
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Eigenfunction Construction Theorem

Given an eigenvalue N, of A, with a specific wy,, its corresponding
etgenfunction can be constructed as above.

® Use (A, wn) = (Ap—1,wn—1) recursions to get back to A, =0 or
Am = 2 (m < n) noting +, — patterns.

® Use (A\p—1,wn—1) = (An,wy) recursions and recursive construction
equation to build eigenfunctions up from I';,, following +, —
choices.

Bannon, Patel, Regan Dynamics of the Basilica Fractal Wednesday BULT July, 202519 /24



Behavior of Eigenfunctions

positive values in green, negative values in red

—Q—




Behavior of Eigenfunctions

positive values in green, negative values in red

—Q—




Behavior of Eigenfunctions

positive values in green, negative values in red

S O
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Recursive Eigenfunction Construction Conjecture

A 1
Ay = 24 (Jd— 2L i
Wn—1 W11 /4 — An—1

Wn—1

Conjecture (Recursively Building Eigenfunctions)

When recursively building eigenfunctions, the function exists if and
only if its corresponding +/— sequence
@® Never has a + + + subsequence, and

® If it has a + + — subsequence, the subsequence is followed by an
odd number of nonconsecutive +’s.

Example:

Good Sequence: Bad Sequence:
-+ -+ -+ -+ —+ -
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Conclusion and Next Steps

Summary
¢ Expanded on recursive dynamics from [5]
® New recursive relationships for Laplacian eigenfunctions

® Spectral properties of eigenfunctions between levels

Next Steps & Further Research

® Proving conjectures
® Further research on dynamics
® Fixed points
® Forbidden regions on A —w plane
® Determine whether a variant of 'y, (one-ended blowup) has
continuous spectrum [1, 2]
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