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Background
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History and Motivation

We expand on work by Grigorchuk and Żuk, who studied the Schreier
graphs of the Basilica group [4, 5].

• Amenability and subexponential growth of the Basilica group

• Weighted Laplacians on these graphs with spectra invariant under
a two-dimensional dynamical system

• We develop an alternative description of the dynamical system in
[5] and study the corresponding dynamics for the eigenfunctions.
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Background: Graph Approximations of the Basilica Set
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Background: Graph Approximations of the Basilica Set
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a-edges (pink) have weight ωn ∈ R+; b-edges (black) have weight 1
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Background: Graph Approximations of the Basilica Set

Γ4:

a-edges: pink

b-edges: black

Vn \ Vn−1 vertices: gray
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The Graph Laplacian

The graph Laplacian encodes all information on Γn as a 2n× 2n matrix:

∆n = Dn −An,

where Dn = (2 + 2ωn)I is the diagonal matrix and An = (aij) is the
adjacency matrix, with entries

aij =


k ωn if i ∼ j (via k a-edges);

k if i ∼ j (via k b-edges);

0 if i ̸∼ j.

Definition (Laplacian Eigenfunction)

For all v ∈ Vn, a Laplacian eigenfunction un on Γn satisfies

∆nun(v) = λnun(v).
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The Graph Laplacian Acting on Functions

For a single vertex v ∈ Vn and a function u on Γn,

∆nu(v) = ωn

∑
x∼

a
v

(
u(v)− u(x)

)
+
∑
x∼

b
v

(
u(v)− u(x)

)
.

Example: On Γ2 the graph Laplacian on a function u is

∆2u =


2 0 −2 0
0 2 0 −2
−2 0 2 + 2ω2 −2ω2

0 −2 −2ω2 2 + 2ω2



u(x1)
u(x2)
u(x3)
u(x4)

 .

Γ2: x4 x3x2 x1
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Results
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Constructing Eigenfunctions

Theorem (Restricting un to obtain un−1)

Suppose Γn has weight ωn ̸= 0 and λn ̸= 2, where un satisfies
∆nun = λnun. Then, restricting un to the vertices Vn−1 produces an
eigenfunction on Γn−1, with

λn−1 =
4λn − λ2

n

ωn (2− λn)
and ωn−1 =

1

ωn (2− λn)
.

Removing V3 \ V2 (gray) to obtain Γ2
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Constructing Eigenfunctions (Proof)

We construct ∆n recursively [5]. Let a0 = b0 = 1,

an =

[
In−1 0
0 bn−1

]
, bn =

[
0 In−1

an−1 0

]
.

Then, ∆n = 2 + 2ωn − ωn

(
an + a−1

n

)
−
(
bn + b−1

n

)
and ∆n − λn =[

2− λn −
(
a−1
n−1 + 1

)
− (an−1 + 1) 2 + 2ωn − ωn

(
bn−1 + b−1

n−1

)
− λn

]
=

[
A B
C D

]

Write the eigenfunction un =

[
ûn
un−1

]
, where ûn = un

∣∣∣
Vn\Vn−1

and

un−1 = un

∣∣∣
Vn−1

. Then

(∆n − λn)un =

[
A B
C D

] [
ûn
un−1

]
= 0.
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Constructing Eigenfunctions (Proof)

The Schur complement of A, D − CA−1B, “deletes” vertices Vn \ Vn−1:

(
D − CA−1B

)
un−1 = 0(

2 +
2

ωn(2− λn)
−

an−1 + a−1
n−1

ωn(2− λn)
−
(
bn−1 + b−1

n−1

)
− 4λn − λ2

n

ωn(2− λn)

)
un−1 = 0.

Compare to the eigenvalue equation on Γn−1:(
2 + 2ωn−1 − ωn−1

(
an−1 + a−1

n−1

)
−
(
bn−1 + b−1

n−1

)
− λn−1

)
un−1 = 0.

Thus, un−1 is an eigenfunction for ∆n−1 with

ωn−1 =
1

ωn (2− λn)
, λn−1 =

4λn − λ2
n

ωn (2− λn)
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Constructing Eigenfunctions

Theorem (Building un+1 from un)

Let un satisfy ∆nun(v) = λnun(v) for all v ∈ Vn, and let λn+1 ̸= 2 and
ωn+1 be written in terms of λn and ωn using the eigenvalue-weight
dynamics. Then un extends to Vn+1 by:

un+1(v) =
1

2− λn+1

∑
x∼v

un(x), v ∈ Vn+1 \ Vn.

This creates an eigenfunction un+1 satisfying ∆n+1un+1 = λn+1un+1.

x1 x2v

Cell in Γn+1

un+1(v) =
un(x1)+un(x2)

2−λn
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Characteristic Polynomial Recursion

Corollary

Let Ψn−1(ωn−1, λn−1) be the characteristic polynomial of ∆n−1 on
Γn−1, with ωn−1 ̸= 0. Then the characteristic polynomial of ∆n on Γn

is given by

Ψn (ωn, λn) = (ωn(2− λn))
2n−1

Ψn−1

(
1

ωn(2− λn)
,
4λn − λ2

n

ωn(2− λn)

)
.

Motivation: Grigorchuk and Żuk prove analogous results for the
adjacency matrix with their dynamics, which we adapt to Γn [5].

Bannon, Patel, Regan Dynamics of the Basilica Fractal Wednesday 30th July, 2025 15 / 24



Inverting Dynamics

λn−1 =
4λn − λ2

n

ωn (2− λn)
, ωn−1 =

1

ωn(2− λn)

λn = 2±

√
4− λn−1

ωn−1
, ωn =

∓1

ωn−1

√
4− λn−1

ωn−1

• With (λn, ωn) → (λn−1, ωn−1), need λn ̸= 2

• With (λn−1, ωn−1) → (λn, ωn), need 4 > λn−1

ωn−1

Recursive Eigenfunction Construction (Reminder)

un+1(v) =
1

2− λn+1

∑
x∼v

un(x), v ∈ Vn+1 \ Vn
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The 0-Series and 2-Series

Lemma (0-Series and 2-Series)

For any λn there exists some m ≤ n such that λn recurses down to
λm = 0 or λm = 2.

0-Series Eigenfunction (n = 3)
(non-zero points in black)

2-Series Eigenfunction (n = 3)
(non-zero points in black)

• 0-series: At some 0 ≤ m < n, λm = 0; Vm is the constant function

• 2-series: At some 3 ≤ m < n, λm = 2; Vm−1 is the zero function
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2-series Eigenfunctions

Lemma (λn = 2 Multiplicity)

The multiplicity of 2 as an eigenvalue of Γn is
2n−1 + 3 + (−1)n−2

6
.

non-zero points in black
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Eigenfunction Construction Theorem

Theorem

Given an eigenvalue λn of ∆n with a specific ωn, its corresponding
eigenfunction can be constructed as above.

1 Use (λn, ωn) → (λn−1, ωn−1) recursions to get back to λm = 0 or
λm = 2 (m ≤ n) noting +,− patterns.

2 Use (λn−1, ωn−1) → (λn, ωn) recursions and recursive construction
equation to build eigenfunctions up from Γm, following +,−
choices.
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Behavior of Eigenfunctions

positive values in green, negative values in red

————————————

+ −

+,− −,−

+,+ −,+
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Recursive Eigenfunction Construction Conjecture

λn = 2±

√
4− λn−1

ωn−1
, ωn =

∓1

ωn−1

√
4− λn−1

ωn−1

Conjecture (Recursively Building Eigenfunctions)

When recursively building eigenfunctions, the function exists if and
only if its corresponding +/− sequence

1 Never has a +++ subsequence, and

2 If it has a ++− subsequence, the subsequence is followed by an
odd number of nonconsecutive +’s.

Example:

Good Sequence: Bad Sequence:

+ + − + − + −+ + + − + − − + −
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Conclusion and Next Steps

Summary

• Expanded on recursive dynamics from [5]

• New recursive relationships for Laplacian eigenfunctions

• Spectral properties of eigenfunctions between levels

Next Steps & Further Research

• Proving conjectures

• Further research on dynamics
• Fixed points
• Forbidden regions on λ− ω plane

• Determine whether a variant of Γ∞ (one-ended blowup) has
continuous spectrum [1, 2]
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Thank you!
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