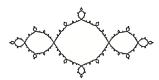
Structure and Dynamics of Laplacian Eigenfunctions on the Basilica Fractal

Anne Bannon, Jeanette Patel, Shivani Regan University of Connecticut Fractals REU

Collaborators: Kyle Ambrose, Noah Dunham, Michael Morris With support from NSF DMS REU 2349433

Wednesday 30th July, 2025



Background

History and Motivation

We expand on work by Grigorchuk and $\dot{Z}uk$, who studied the Schreier graphs of the Basilica group [4, 5].

- Amenability and subexponential growth of the Basilica group
- Weighted Laplacians on these graphs with spectra invariant under a two-dimensional dynamical system
- We develop an alternative description of the dynamical system in [5] and study the corresponding dynamics for the eigenfunctions.

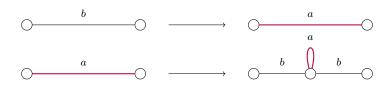
 Γ_0 : b \bigcirc a

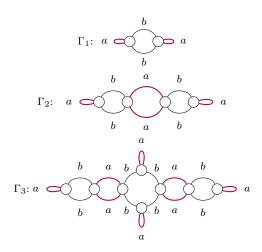
a-edges (pink) have weight ω_0 ; b-edges (black) have weight 1

 Γ_0 : b \bigcirc a

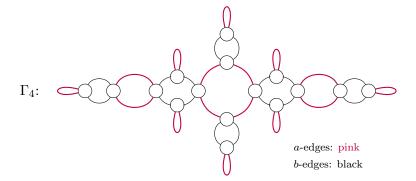
a-edges (pink) have weight ω_0 ; b-edges (black) have weight 1

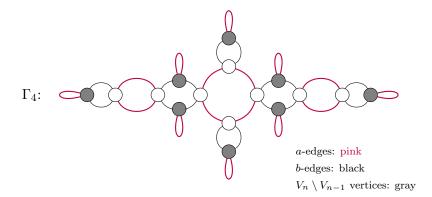
Replacement Rules





a-edges (pink) have weight $\omega_n \in \mathbb{R}^+$; b-edges (black) have weight 1





The Graph Laplacian

The graph Laplacian encodes all information on Γ_n as a $2^n \times 2^n$ matrix:

$$\Delta_n = D_n - A_n,$$

where $D_n = (2 + 2\omega_n)I$ is the diagonal matrix and $A_n = (a_{ij})$ is the adjacency matrix, with entries

$$a_{ij} = \begin{cases} k \,\omega_n \text{ if } i \sim j \text{ (via } k \text{ a-edges);} \\ k \text{ if } i \sim j \text{ (via } k \text{ b-edges);} \\ 0 \text{ if } i \not\sim j. \end{cases}$$

The Graph Laplacian

The graph Laplacian encodes all information on Γ_n as a $2^n \times 2^n$ matrix:

$$\Delta_n = D_n - A_n,$$

where $D_n = (2 + 2\omega_n)I$ is the diagonal matrix and $A_n = (a_{ij})$ is the adjacency matrix, with entries

$$a_{ij} = \begin{cases} k \,\omega_n \text{ if } i \sim j \text{ (via } k \,a\text{-edges);} \\ k \text{ if } i \sim j \text{ (via } k \,b\text{-edges);} \\ 0 \text{ if } i \not\sim j. \end{cases}$$

Definition (Laplacian Eigenfunction)

For all $v \in V_n$, a Laplacian eigenfunction u_n on Γ_n satisfies

$$\Delta_n u_n(v) = \lambda_n u_n(v).$$

The Graph Laplacian Acting on Functions

For a single vertex $v \in V_n$ and a function u on Γ_n ,

$$\Delta_n u(v) = \omega_n \sum_{\substack{x \sim v \\ a}} \left(u(v) - u(x) \right) + \sum_{\substack{x \sim v \\ b}} \left(u(v) - u(x) \right).$$

Example: On Γ_2 the graph Laplacian on a function u is

$$\Delta_2 u = \begin{bmatrix} 2 & 0 & -2 & 0 \\ 0 & 2 & 0 & -2 \\ -2 & 0 & 2 + 2\omega_2 & -2\omega_2 \\ 0 & -2 & -2\omega_2 & 2 + 2\omega_2 \end{bmatrix} \begin{bmatrix} u(x_1) \\ u(x_2) \\ u(x_3) \\ u(x_4) \end{bmatrix}.$$

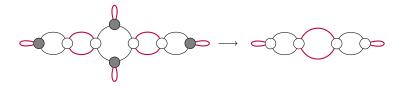
Results

Constructing Eigenfunctions

Theorem (Restricting u_n to obtain u_{n-1})

Suppose Γ_n has weight $\omega_n \neq 0$ and $\lambda_n \neq 2$, where u_n satisfies $\Delta_n u_n = \lambda_n u_n$. Then, restricting u_n to the vertices V_{n-1} produces an eigenfunction on Γ_{n-1} , with

$$\lambda_{n-1} = \frac{4\lambda_n - \lambda_n^2}{\omega_n (2 - \lambda_n)}$$
 and $\omega_{n-1} = \frac{1}{\omega_n (2 - \lambda_n)}$.



Removing $V_3 \setminus V_2$ (gray) to obtain Γ_2

We construct Δ_n recursively [5]. Let $a_0 = b_0 = 1$,

$$a_n = \begin{bmatrix} I_{n-1} & 0 \\ 0 & b_{n-1} \end{bmatrix}, b_n = \begin{bmatrix} 0 & I_{n-1} \\ a_{n-1} & 0 \end{bmatrix}.$$

Then,
$$\Delta_n = 2 + 2\omega_n - \omega_n \left(a_n + a_n^{-1}\right) - \left(b_n + b_n^{-1}\right)$$
 and $\Delta_n - \lambda_n =$

$$\begin{bmatrix} 2 - \lambda_n & -(a_{n-1}^{-1} + 1) \\ -(a_{n-1} + 1) & 2 + 2\omega_n - \omega_n (b_{n-1} + b_{n-1}^{-1}) - \lambda_n \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

We construct Δ_n recursively [5]. Let $a_0 = b_0 = 1$,

$$a_n = \begin{bmatrix} I_{n-1} & 0 \\ 0 & b_{n-1} \end{bmatrix}, b_n = \begin{bmatrix} 0 & I_{n-1} \\ a_{n-1} & 0 \end{bmatrix}.$$

Then, $\Delta_n = 2 + 2\omega_n - \omega_n \left(a_n + a_n^{-1}\right) - \left(b_n + b_n^{-1}\right)$ and $\Delta_n - \lambda_n =$

$$\begin{bmatrix} 2 - \lambda_n & -(a_{n-1}^{-1} + 1) \\ -(a_{n-1} + 1) & 2 + 2\omega_n - \omega_n (b_{n-1} + b_{n-1}^{-1}) - \lambda_n \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

Write the eigenfunction $u_n = \begin{bmatrix} \widehat{u_n} \\ u_{n-1} \end{bmatrix}$, where $\widehat{u_n} = u_n \Big|_{V_n \setminus V_{n-1}}$ and $u_{n-1} = u_n \Big|_{V_{n-1}}$. Then

$$(\Delta_n - \lambda_n) u_n = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} \widehat{u_n} \\ u_{n-1} \end{bmatrix} = 0.$$

The Schur complement of A, $D - CA^{-1}B$, "deletes" vertices $V_n \setminus V_{n-1}$:

$$(D - CA^{-1}B) u_{n-1} = 0$$

$$\left(2 + \frac{2}{\omega_n(2 - \lambda_n)} - \frac{a_{n-1} + a_{n-1}^{-1}}{\omega_n(2 - \lambda_n)} - (b_{n-1} + b_{n-1}^{-1}) - \frac{4\lambda_n - \lambda_n^2}{\omega_n(2 - \lambda_n)}\right) u_{n-1} = 0.$$

The Schur complement of A, $D - CA^{-1}B$, "deletes" vertices $V_n \setminus V_{n-1}$:

$$(D - CA^{-1}B) u_{n-1} = 0$$

$$\left(2 + \frac{2}{\omega_n(2 - \lambda_n)} - \frac{a_{n-1} + a_{n-1}^{-1}}{\omega_n(2 - \lambda_n)} - (b_{n-1} + b_{n-1}^{-1}) - \frac{4\lambda_n - \lambda_n^2}{\omega_n(2 - \lambda_n)}\right) u_{n-1} = 0.$$

Compare to the eigenvalue equation on Γ_{n-1} :

$$(2 + 2\omega_{n-1} - \omega_{n-1} (a_{n-1} + a_{n-1}^{-1}) - (b_{n-1} + b_{n-1}^{-1}) - \lambda_{n-1}) u_{n-1} = 0.$$

Thus, u_{n-1} is an eigenfunction for Δ_{n-1} with

$$\omega_{n-1} = \frac{1}{\omega_n (2 - \lambda_n)}, \quad \lambda_{n-1} = \frac{4\lambda_n - \lambda_n^2}{\omega_n (2 - \lambda_n)}$$

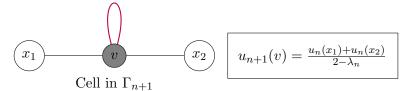
Constructing Eigenfunctions

Theorem (Building u_{n+1} from u_n)

Let u_n satisfy $\Delta_n u_n(v) = \lambda_n u_n(v)$ for all $v \in V_n$, and let $\lambda_{n+1} \neq 2$ and ω_{n+1} be written in terms of λ_n and ω_n using the eigenvalue-weight dynamics. Then u_n extends to V_{n+1} by:

$$u_{n+1}(v) = \frac{1}{2 - \lambda_{n+1}} \sum_{x \sim v} u_n(x), \ v \in V_{n+1} \setminus V_n.$$

This creates an eigenfunction u_{n+1} satisfying $\Delta_{n+1}u_{n+1} = \lambda_{n+1}u_{n+1}$.



Characteristic Polynomial Recursion

Corollary

Let $\Psi_{n-1}(\omega_{n-1}, \lambda_{n-1})$ be the characteristic polynomial of Δ_{n-1} on Γ_{n-1} , with $\omega_{n-1} \neq 0$. Then the characteristic polynomial of Δ_n on Γ_n is given by

$$\Psi_n(\omega_n, \lambda_n) = (\omega_n(2 - \lambda_n))^{2^{n-1}} \Psi_{n-1} \left(\frac{1}{\omega_n(2 - \lambda_n)}, \frac{4\lambda_n - \lambda_n^2}{\omega_n(2 - \lambda_n)} \right).$$

Motivation: Grigorchuk and Żuk prove analogous results for the adjacency matrix with their dynamics, which we adapt to Γ_n [5].

Inverting Dynamics

$$\lambda_{n-1} = \frac{4\lambda_n - \lambda_n^2}{\omega_n (2 - \lambda_n)}, \ \omega_{n-1} = \frac{1}{\omega_n (2 - \lambda_n)}$$
$$\lambda_n = 2 \pm \sqrt{4 - \frac{\lambda_{n-1}}{\omega_{n-1}}}, \ \omega_n = \frac{\mp 1}{\omega_{n-1} \sqrt{4 - \frac{\lambda_{n-1}}{\omega_{n-1}}}}$$

- With $(\lambda_n, \omega_n) \to (\lambda_{n-1}, \omega_{n-1})$, need $\lambda_n \neq 2$
- With $(\lambda_{n-1}, \omega_{n-1}) \to (\lambda_n, \omega_n)$, need $4 > \frac{\lambda_{n-1}}{\omega_{n-1}}$

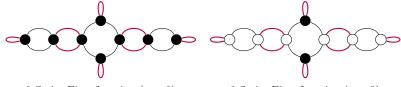
Recursive Eigenfunction Construction (Reminder)

$$u_{n+1}(v) = \frac{1}{2 - \lambda_{n+1}} \sum_{x > v} u_n(x), \ v \in V_{n+1} \setminus V_n$$

The 0-Series and 2-Series

Lemma (0-Series and 2-Series)

For any λ_n there exists some $m \leq n$ such that λ_n recurses down to $\lambda_m = 0$ or $\lambda_m = 2$.



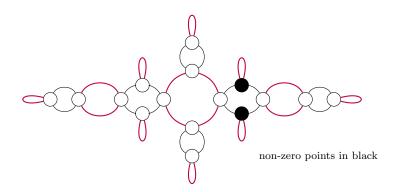
0-Series Eigenfunction (n = 3) (non-zero points in black)

- 2-Series Eigenfunction (n = 3) (non-zero points in black)
- 0-series: At some $0 \le m < n$, $\lambda_m = 0$; V_m is the constant function
- 2-series: At some $3 \le m < n, \lambda_m = 2; V_{m-1}$ is the zero function

2-series Eigenfunctions

Lemma ($\lambda_n = 2$ Multiplicity)

The multiplicity of 2 as an eigenvalue of Γ_n is $\frac{2^{n-1}+3+(-1)^{n-2}}{6}$



Eigenfunction Construction Theorem

Theorem

Given an eigenvalue λ_n of Δ_n with a specific ω_n , its corresponding eigenfunction can be constructed as above.

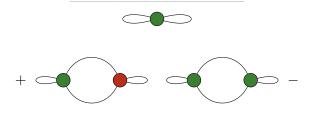
- Use $(\lambda_n, \omega_n) \to (\lambda_{n-1}, \omega_{n-1})$ recursions to get back to $\lambda_m = 0$ or $\lambda_m = 2 \ (m \le n)$ noting +, patterns.
- 2 Use $(\lambda_{n-1}, \omega_{n-1}) \to (\lambda_n, \omega_n)$ recursions and recursive construction equation to build eigenfunctions up from Γ_m , following +,- choices.

Behavior of Eigenfunctions

positive values in green, negative values in red

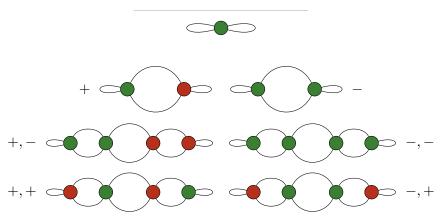
Behavior of Eigenfunctions

positive values in green, negative values in red



Behavior of Eigenfunctions

positive values in green, negative values in red



Recursive Eigenfunction Construction Conjecture

$$\lambda_n = 2 \pm \sqrt{4 - \frac{\lambda_{n-1}}{\omega_{n-1}}}, \ \omega_n = \frac{\mp 1}{\omega_{n-1}\sqrt{4 - \frac{\lambda_{n-1}}{\omega_{n-1}}}}$$

Conjecture (Recursively Building Eigenfunctions)

When recursively building eigenfunctions, the function exists if and only if its corresponding +/- sequence

- \bullet Never has a+++ subsequence, and
- 2) If it has a + + subsequence, the subsequence is followed by an odd number of nonconsecutive +'s.

Example:

Good Sequence: Bad Sequence:
$$++-+-+-+$$

Conclusion and Next Steps

Summary

- Expanded on recursive dynamics from [5]
- New recursive relationships for Laplacian eigenfunctions
- Spectral properties of eigenfunctions between levels

Next Steps & Further Research

- Proving conjectures
- Further research on dynamics
 - Fixed points
 - Forbidden regions on $\lambda \omega$ plane
- Determine whether a variant of Γ_{∞} (one-ended blowup) has continuous spectrum [1, 2]

Bibliography

- [1] Antoni Brzoska et al. Spectral properties of graphs associated to the Basilica group. 2025. arXiv: 1908.10505 [math.GR].
- [2] Daniele D'angeli et al. "Schreier graphs of the Basilica group". In: Journal of Modern Dynamics 4.1 (2010), pp. 167–205.
- [3] Luke G. Rogers and Alexander Teplyaev. "Laplacians on the basilica Julia set". In: Communications on Pure and Applied Analysis 9.1 (2010), pp. 211–231.
- [4] Rostislav I. Grigorchuk and Andrzej Zuk. "On a torsion-free weakly branch group defined by a three state automaton". In: *Int. J. of Algebra and Computation* 12.1–2 (2002), pp. 223–246.
- [5] Rostislav I. Grigorchuk and Andrzej Żuk. "Spectral properties of a torsion-free weakly branch group defined by a three state automaton". In: *Contemporary Math.* 298 (2002), pp. 57–82.
- [6] Robert S. Strichartz. Differential Equations on Fractals. Princeton University Press, 2006.

Thank you!