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Defining I',, Graphs
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Defining the Basilica

We look at the following construction:
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Defining I',, Graphs I

We can construct I' graphs from G graphs as follows:
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Defining I',, Graphs II

An equivalent construction of I';, is:
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The Basilica

This construction of I' graphs are the finite Schreier graphs of the
Basilica Group. The Basilica fractal has been studied by

® Nekrashevych in the theory of iterated monodromy groups [4]

Bartholdi in the theory of amenable groups [1]

Grigorchuk and Zuk as a 3-state automata [3]
Nekrashevych as the Julia Set of 22 — 1 [4]

Figure: The Basilica Julia set, the Julia set of 22 — 1.
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Background Definitions I

Definition (Graph Laplacian)

The graph Laplacian encodes all information on the graph I';, as a
matrix

A(Ty,) =D, — A,.
D,, = 41 is the degree matrix and A,, = (a;;) the adjacency matrix.

0 =
I 0ifidtj

{k if i ~j (via k edges);
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Background Definitions II

Definition (Eigenfunctions and Eigenvalues)

A is an eigenvalue of the graph Laplacian with eigenfunction f if
AT,) f=Af
For some A € R>¢ and f # 0.

At a specific vertex, the sum of the edge differences must be equal to A - f(z).

A fl@) =D (@) = f(y))

T~y
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Background Definitions III

Definition (Dirichlet Eigenfunctions and Eigenvalues of G,,)

A is a Dirichlet eigenvalue of A (G,) with associated Dirichlet eigenfunction f if
flag, =0 and A and f are an eigenvalue/eigenfunction pair of A (G \ 9Gnr).

Definition (spec and Dirspec)

spec (A (T'n)) is the set of eigenvalues of A (T',) including multiplicity
Dirspec (A (Gr)) is the set of Dirichlet eigenvalues of A (G,,) including multiplicity
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G, to I',, Connections

® Previous work in [2] has fully understood the spectrum of the
Dirichlet Laplacian on the G,, graphs.

® We use this previous work to understand the spectrum of the
Laplacian on the I',, graphs.

Gn_s
/ \
7/ \
N / \ .
S v L
; : G
Gn—l N o n—1
LR AN
. \ , N
\ /
\ /

se, Dunham, Morris Spectrum of the Basilica Friday fied August, 2025 10/31



Motivations Summary

® The I',, graphs are the finite Schreier graphs of the Basilica group

® We can build the I';, graphs from G,, graphs

® We can define the G, graphs recursively from previous G,, graphs

® The spectrum of the Dirichlet Laplacian on the G, graphs is
understood in previous work

® We extend this previous work to understand the spectrum of the
Laplacian on I'),
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Gluing Maintains Eigenfunctions I

For any n € N, if X is an eigenvalue of A (T'),) then X is an eigenvalue
Of A (Fn+1)'
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Gluing Maintains Eigenfunctions II

Let A be an eigenvalue of A (T',,) with eigenfunction f.
fn= f|Gn and f,_1 = f‘Gnq
T, : Thyr:

fn—l

f f / \
n—1 \M k, n S ‘*/ \4 A
o f ‘e o= f
71K n ST NN n
4 N 4 \ ’ >
/

Thus, using this restriction, it must be that there is an eigenfunction
on A (I',41) with eigenvalue .
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Born Eigenvalues

A is born on level n for arbitrary graph T, if A € spec(A(T},)), but
A & spec(A(Ty,)) for any m < n.
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Characteristic Polynomial

We seek a recursion on the characteristic polynomial of A(T',,).

The characteristic polynomial of the graph Laplacian on I';, is defined

as:

Py, = H (>‘_>‘j)

Aj€spec(A(Ty))
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Definitions of 2-series and O-series 1

Definition (2-series Eigenvalue)

Any eigenvalue of A (I'),) associated with some eigenfunction having
both values to the left and right of the center loop equal to 0.
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Definitions of 2-series and 0O-series 11

Definition (0-series Eigenvalue)

Any eigenvalue of A (I'),) associated with some eigenfunction having
a#0orb#0
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Motivation for Characteristic Polynomial Factorization

The characteristic polynomial of A(G,, \ 0G,,) has some factorization,
so we expect the characteristic polynomial for I';, graphs to look

something like
n _ H /l/]an k Bn k

® 1, 1 is the polynomial whose roots are the O-series eigenvalues
born at level k

® v,k is the polynomial whose roots are the 2-series eigenvalues
born at level k
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2-series eigenvalues are in the Dirichlet spectrum of G,

If A € spec(A(T'y)) and is in the 2-series then A is in the Dirichlet
spectrum of the Laplacian on Gy, \ 0G,, for some m.

Proof: Let A € spec(A(T'),)) be an element of the 2-series. At least one
of the restrictions to G,, or G,_1 is non-zero. Therefore, A must be a
Dirichlet eigenvalue of A (Gy,) or A (Gp—1).
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n—o Eigenvalues to I',,

If X\ first appears as an eigenvalue at level n —2 on Gp—o \ 0G,—2, then
it first appears as an eigenvalue at level n on I'y,
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2-series eigenvalues are simple on the level they are born

If A € spec(A(T'y)) and is in the 2-series, then X is simple at the level
it was born

This result comes from the fact that A must be in Dirspec(A(Gy)). A is
simple on G}, at the level it was born, and the I'), graphs are built from
G, graphs.
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2-series Eigenvalues Multiplicity

If X € spec(A(T),)) is in the 2-series and X is born at level k, the
2n—k+2 +34+ (_1)n—k+1
6

multiplicity of X at level n is

This shown by gluing copies of Gi_o graphs together to build I',
graphs for any n, and counting the eigenfunctions.
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0-series eigenvalues are simple

If X € spec(A(I'y)) and is in the 0-series, then X\ is simple at every
level n

Proof: Suppose A € spec(A(I',)) lies in the 0-series. Then

A ¢ Dirspec(A(Gy,)) for any m. If two eigenfunctions correspond to A,
any linear combination vanishing at a gluing point must be identically
Z€ro.
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Factorization into v and v

The characteristic polynomial of the spectrum of Iy, is:

n—1
P, = 71%%172 H ¢k%§f§k
k=0

22+n7k+3+ 1 n—k+1
On—k = 6( )

Y s the polynomial whose roots are the 0-series eigenvalues born at
level k

Ye—2 1S the polynomial whose roots are the 2-series eigenvalues born at

level k
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Motivation for Dynamics

¢ In previous work [2], there are simple dynamics for the new roots
of the characteristic polynomial of A(G,, \ 0G,,)

® We find dynamics for the new roots of the characteristic
polynomial of A(T,)
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- Dynamics

Theorem (Brzos
For

v, k
Co =", Tn="Tn—1 Z 72—23‘—3,

In 0<2j<n—4
then if n > 4,

— — 2 2 —_
G —2= <1+ Cn_1> Gy —4)
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7, Dynamics

For
7, = "pn’Yn—Q

Tn
then if n > 5,

Zn—lzn—QCnCn—l (Zn - 1) (C2—3 - 4) = (ZH—Q - 1) (CZ—l - 4) C"_Q
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Spectral Measure Graph

n
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KNS Spectral Measure

The Kesten-Von-Neumann-Serre (KNS) Spectral Measure of A (T'y,) is

2
X = w-lim (xn) Z > 372750
k=0 {X\:yg_2(X)=0}
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® We understand the spectrum of the Laplacian on the I';, graphs

® We used our understanding of the Dirichlet spectrum of GG, and
gluing to understand the spectrum of the Laplacian on I';, graphs

® We factored the characteristic polynomial of A(T',) into a product
of O-series and 2-series terms

® We found dynamics which describe the new factors of the
characteristic polynomial of A(T',)

® We found the KNS spectral measure
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