Spectrum of the Basilica Schreier Graphs

Kyle Ambrose, Noah Dunham, Michael Morris University of Connecticut Fractals REU

Collaborators: Anne Bannon, Jeanette Patel, Shivani Regan Mentors: Luke Rogers, Alexander Teplyaev

Friday 1st August, 2025

REU Site: Fractals and Stochastics at UConn NSF Grant DMS-2349433 (2024-2027)

Defining Γ_n Graphs

Defining the Basilica

We look at the following construction:

Defining Γ_n Graphs I

We can construct Γ graphs from G graphs as follows:

Defining Γ_n Graphs II

An equivalent construction of Γ_n is:

The Basilica

This construction of Γ graphs are the finite Schreier graphs of the Basilica Group. The Basilica fractal has been studied by

- Nekrashevych in the theory of iterated monodromy groups [4]
- Bartholdi in the theory of amenable groups [1]
- Grigorchuk and Zuk as a 3-state automata [3]
- Nekrashevych as the Julia Set of $z^2 1$ [4]

Figure: The Basilica Julia set, the Julia set of $z^2 - 1$.

Background Definitions I

Definition (Graph Laplacian)

The graph Laplacian encodes all information on the graph Γ_n as a matrix

$$\Delta(\Gamma_n) = D_n - A_n.$$

 $D_n = 4I$ is the degree matrix and $A_n = (a_{ij})$ the adjacency matrix.

$$a_{i,j} = \begin{cases} k \text{ if } i \sim j \text{ (via } k \text{ edges)}; \\ 0 \text{ if } i \not\sim j \end{cases}$$

Background Definitions II

Definition (Eigenfunctions and Eigenvalues)

 λ is an eigenvalue of the graph Laplacian with eigenfunction f if

$$\Delta\left(\Gamma_{n}\right)f = \lambda f$$

For some $\lambda \in \mathbb{R}_{\geq 0}$ and $f \not\equiv 0$.

At a specific vertex, the sum of the edge differences must be equal to $\lambda \cdot f(x)$.

$$\lambda \cdot f(x) = \sum_{x \sim y} (f(x) - f(y))$$

Background Definitions III

Definition (Dirichlet Eigenfunctions and Eigenvalues of G_n)

 λ is a Dirichlet eigenvalue of $\Delta\left(G_{n}\right)$ with associated Dirichlet eigenfunction f if $f|_{\partial G_{n}}=0$ and λ and f are an eigenvalue/eigenfunction pair of $\Delta\left(G_{n}\setminus\partial G_{n}\right)$.

Definition (spec and Dirspec)

 $spec\left(\Delta\left(\Gamma_{n}\right)\right)$ is the set of eigenvalues of $\Delta\left(\Gamma_{n}\right)$ including multiplicity $Dirspec\left(\Delta\left(G_{n}\right)\right)$ is the set of Dirichlet eigenvalues of $\Delta\left(G_{n}\right)$ including multiplicity

G_n to Γ_n Connections

- Previous work in [2] has fully understood the spectrum of the Dirichlet Laplacian on the G_n graphs.
- We use this previous work to understand the spectrum of the Laplacian on the Γ_n graphs.

Motivations Summary

- The Γ_n graphs are the finite Schreier graphs of the Basilica group
- We can build the Γ_n graphs from G_n graphs
- We can define the G_n graphs recursively from previous G_n graphs
- The spectrum of the Dirichlet Laplacian on the G_n graphs is understood in previous work
- We extend this previous work to understand the spectrum of the Laplacian on Γ_n

Gluing Maintains Eigenfunctions I

Theorem

For any $n \in \mathbb{N}$, if λ is an eigenvalue of $\Delta(\Gamma_n)$ then λ is an eigenvalue of $\Delta(\Gamma_{n+1})$.

Gluing Maintains Eigenfunctions II

Let λ be an eigenvalue of $\Delta(\Gamma_n)$ with eigenfunction f.

$$f_n = f|_{G_n}$$
 and $f_{n-1} = f|_{G_{n-1}}$

 Γ_n :

 Γ_{n+1} :

Thus, using this restriction, it must be that there is an eigenfunction on $\Delta(\Gamma_{n+1})$ with eigenvalue λ .

Born Eigenvalues

Definition

 λ is born on level n for arbitrary graph T_n if $\lambda \in spec(\Delta(T_n))$, but $\lambda \notin spec(\Delta(T_m))$ for any m < n.

Characteristic Polynomial

We seek a recursion on the characteristic polynomial of $\Delta(\Gamma_n)$.

Definition

The characteristic polynomial of the graph Laplacian on Γ_n is defined as:

$$P_n = \prod_{\lambda_j \in spec(\Delta(\Gamma_n))} (\lambda - \lambda_j)$$

Definitions of 2-series and 0-series I

Definition (2-series Eigenvalue)

Any eigenvalue of $\Delta(\Gamma_n)$ associated with some eigenfunction having both values to the left and right of the center loop equal to 0.

Definitions of 2-series and 0-series II

Definition (0-series Eigenvalue)

Any eigenvalue of $\Delta\left(\Gamma_{n}\right)$ associated with some eigenfunction having $a\neq0$ or $b\neq0$

Motivation for Characteristic Polynomial Factorization

The characteristic polynomial of $\Delta(G_n \setminus \partial G_n)$ has some factorization, so we expect the characteristic polynomial for Γ_n graphs to look something like

$$P_n = \prod_{k=0}^n \psi_k^{\alpha_{n,k}} v_k^{\beta_{n,k}}$$

- $\psi_{n,k}$ is the polynomial whose roots are the 0-series eigenvalues born at level k
- $v_{n,k}$ is the polynomial whose roots are the 2-series eigenvalues born at level k

2-series eigenvalues are in the Dirichlet spectrum of G_n

Lemma

If $\lambda \in spec(\Delta(\Gamma_n))$ and is in the 2-series then λ is in the Dirichlet spectrum of the Laplacian on $G_m \setminus \partial G_m$ for some m.

Proof: Let $\lambda \in spec(\Delta(\Gamma_n))$ be an element of the 2-series. At least one of the restrictions to G_n or G_{n-1} is non-zero. Therefore, λ must be a Dirichlet eigenvalue of $\Delta(G_n)$ or $\Delta(G_{n-1})$.

$G_{n-2} \setminus \partial G_{n-2}$ Eigenvalues to Γ_n

Lemma

If λ first appears as an eigenvalue at level n-2 on $G_{n-2} \setminus \partial G_{n-2}$, then it first appears as an eigenvalue at level n on Γ_n

2-series eigenvalues are simple on the level they are born

Lemma

If $\lambda \in spec(\Delta(\Gamma_n))$ and is in the 2-series, then λ is simple at the level it was born

This result comes from the fact that λ must be in $\operatorname{Dirspec}(\Delta(G_n))$. λ is simple on G_n at the level it was born, and the Γ_n graphs are built from G_n graphs.

2-series Eigenvalues Multiplicity

Lemma

If $\lambda \in spec(\Delta(\Gamma_n))$ is in the 2-series and λ is born at level k, the $2^{n-k+2} + 3 + (-1)^{n-k+1}$ multiplicity of λ at level n is

This shown by gluing copies of G_{k-2} graphs together to build Γ_n graphs for any n, and counting the eigenfunctions.

0-series eigenvalues are simple

Lemma

If $\lambda \in spec(\Delta(\Gamma_n))$ and is in the 0-series, then λ is simple at every level n

Proof: Suppose $\lambda \in spec(\Delta(\Gamma_n))$ lies in the 0-series. Then $\lambda \notin \text{Dirspec}(\Delta(G_m))$ for any m. If two eigenfunctions correspond to λ , any linear combination vanishing at a gluing point must be identically zero.

Factorization into γ and ψ

Theorem

The characteristic polynomial of the spectrum of Γ_n is:

$$P_{n} = \psi_{n} \gamma_{n-2} \prod_{k=0}^{n-1} \psi_{k} \gamma_{k-2}^{\sigma_{n-k}}$$

$$\sigma_{n-k} = \frac{2^{2+n-k} + 3 + (-1)^{n-k+1}}{6}$$

 ψ_k is the polynomial whose roots are the 0-series eigenvalues born at level k

 γ_{k-2} is the polynomial whose roots are the 2-series eigenvalues born at level k

Motivation for Dynamics

- In previous work [2], there are simple dynamics for the new roots of the characteristic polynomial of $\Delta(G_n \setminus \partial G_n)$
- We find dynamics for the new roots of the characteristic polynomial of $\Delta(\Gamma_n)$

ζ_n Dynamics

Theorem (Brzoska et al.)

For

$$\zeta_n = \frac{\gamma_n}{\eta_n}, \quad \eta_n = \gamma_{n-1} \sum_{0 \le 2j \le n-4} \gamma_{n-2j-3}^{2^k},$$

then if $n \geq 4$,

$$\zeta_n - 2 = \left(1 + \frac{2}{\zeta_{n-1}}\right) \left(\zeta_{n-2}^2 - 4\right)$$

$\overline{\mathrm{Z}_n}$ Dynamics

Theorem

For

$$Z_n = \frac{\psi_n \gamma_{n-2}}{\gamma_n}$$

then if $n \geq 5$,

$$Z_{n-1}Z_{n-2}\zeta_n\zeta_{n-1}(Z_n-1)(\zeta_{n-3}^2-4) = (Z_{n-2}-1)(\zeta_{n-1}^2-4)\zeta_{n-2}$$

Spectral Measure Graph

$$\chi_n = \sum_{k=0}^n \left(\sum_{\{\lambda: \gamma_{k-2}(\lambda)=0\}} \frac{\sigma_{n-k}}{2^n} \delta_{\lambda} + \sum_{\{\lambda: \psi_n(\lambda)=0\}} \frac{1}{2^n} \delta_{\lambda} \right)$$

Spectral Measure graph at n = 10

KNS Spectral Measure

Theorem

The Kesten-Von-Neumann-Serre (KNS) Spectral Measure of $\Delta(\Gamma_n)$ is

$$\chi = \underset{n \to \infty}{\text{w-lim}} \left(\chi_n \right) = \sum_{k=0}^{\infty} \sum_{\{\lambda: \gamma_{k-2}(\lambda) = 0\}} \frac{2}{3} \cdot 2^{-k} \cdot \delta_{\lambda}$$

Summary

- We understand the spectrum of the Laplacian on the Γ_n graphs
- We used our understanding of the Dirichlet spectrum of G_n and gluing to understand the spectrum of the Laplacian on Γ_n graphs
- We factored the characteristic polynomial of $\Delta(\Gamma_n)$ into a product of 0-series and 2-series terms
- We found dynamics which describe the new factors of the characteristic polynomial of $\Delta(\Gamma_n)$
- We found the KNS spectral measure

Citations

- [1] Laurent Bartholdi and Bálint Virág. "Amenability via random walks". In: Duke Mathematical Journal 130.1 (Oct. 2005). ISSN: 0012-7094. DOI: 10.1215/s0012-7094-05-13012-5. URL: http://dx.doi.org/10.1215/S0012-7094-05-13012-5.
- [2] Antoni Brzoska et al. Spectral properties of graphs associated to the Basilica group. 2025. arXiv: 1908.10505 [math.GR].
- [3] Rostislav I. Grigorchuk and Andrzej Żuk. "Spectral properties of a torsion-free weakly branch group defined by a three state automaton". In: 2002.
- [4] Volodymyr Nekrashevych. "Self-Similar Groups". In: *Mathematical Surveys and Monographs* (2005).